SW $n^{\circ} 06$ of Mechanic Work and Energy

Exercise 1

A particle of mass m , initially at rest in A , slides without friction on the circular surface AOB of radius a.

1) Determine the work of weight from A to M.
2) Determine the work of the surface-particle contact force m
3) Determine the potential energy E_{p} of m at the point $M\left(E_{p}(B)=0\right)$.

4) Use the kinetic energy theorem to determine the speed of m at point M, deduce its kinetic energy E_{c}.
5) Calculate the mechanical energy E_{m}.
6) Show E_{c}, E_{p} and $E_{m}(0<\theta<\pi 2)$. Discuss.
7) The circular surface $A O B$ is connected to a horizontal part BC , there is friction between B and C , the particle stops at a distance d from B. Determine the coefficient of kinetic friction. Given $d=3 a=$ 3 m .

Exercise 2

Consider a small block of mass $m=5 \mathrm{~kg}$ dropped without initial velocity at point A of an inclined plane at an angle $\alpha=30^{\circ}$ to the horizontal. Point A is at a height $h_{0}=5 \mathrm{~m}$ from the horizontal.
1 - Knowing that the coefficient of dynamic friction on plane $A B$ is $\mu_{d}=0.2$, applying the fundamental principle of dynamics:

- What is the nature of the motion on plane AB ?
- Calculate the speed of the block when it reaches point B.

2- After passing through point B at speed V_{B}, the mass arrives at point C. Knowing that the coefficient of friction is negligible on plane BC :

- Deduce the speed at point C?
- Calculate the maximum compression of the spring, given a stiffness constant equal to $\mathrm{k}=100 \mathrm{~N} / \mathrm{m} ?\left(\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

Exercise 3

A piece of ice M of mass m slides without friction over the outer surface of an igloo, which is a halfsphere of radius r with a horizontal base.
At $t=0$, it is released from point A without any initial velocity.

- Find the expression for the velocity at point B , as a function of g, r and θ.
- Using the fundamental relation of dynamics, determine the expression of $|\vec{N}|$ the reaction of the igloo on M at point B as a function of velocity v_{B}.
- At what height does M leave the sphere?
- At what speed does M arrive at the axis (Ox)?

