SW $n^{\circ} 06$ of Mechanic Work and Energy

Exercise 1

A particle of mass m , initially at rest in A , slides without friction on the circular surface AOB of radius a.

1) Determine the work of weight from A to M.
2) Determine the work of the surface-particle contact force m
3) Determine the potential energy E_{p} of m at the point $M\left(E_{p}(B)=0\right)$.

4) Use the kinetic energy theorem to determine the speed of m at point M, deduce its kinetic energy E_{c}.
5) Calculate the mechanical energy E_{m}.
6) Show E_{c}, E_{p} and $E_{m}(0<\theta<\pi 2)$. Discuss.
7) The circular surface AOB is connected to a horizontal part BC , there is friction between B and C , the particle stops at a distance d from B . Determine the coefficient of kinetic friction. Given $\mathrm{d}=3 \mathrm{a}=$ 3m.

Exercise 2

Consider a small block of mass $m=5 \mathrm{~kg}$ dropped without initial velocity at point A of an inclined plane at an angle $\alpha=30^{\circ}$ to the horizontal. Point A is at a height $h_{0}=5 \mathrm{~m}$ from the horizontal.
1 - Knowing that the coefficient of dynamic friction on plane $A B$ is $\mu_{d}=0.2$, applying the fundamental principle of dynamics:

- What is the nature of the motion on plane AB ?
- Calculate the speed of the block when it reaches point B.

2- After passing through point B at speed V_{B}, the mass arrives at point C. Knowing that the coefficient of friction is negligible on plane BC :

- Deduce the speed at point C?
- Calculate the maximum compression of the spring, given a stiffness constant equal to $\mathrm{k}=100 \mathrm{~N} / \mathrm{m} ?\left(\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

Exercise 3

A piece of ice M of mass m slides without friction over the outer surface of an igloo, which is a halfsphere of radius r with a horizontal base.
At $t=0$, it is released from point A without any initial velocity.

- Find the expression for the velocity at point B , as a function of g, r and θ.
- Using the fundamental relation of dynamics, determine the expression of $|\vec{N}|$ the reaction of the igloo on M at point B as a function of velocity v_{B}.
- At what height does M leave the sphere?
- At what speed does M arrive at the axis (Ox)?

Corrected exercises

EXERCISE 1

1) The work of \vec{p} from A to M is:

$$
\begin{aligned}
& d W=\vec{p} \cdot \overrightarrow{d l} \quad \text { with } \quad p=m g \vec{\jmath} \\
& \overrightarrow{d l}=d x \vec{\imath}+d y \vec{\jmath} \quad \text { so } \quad d W=m g d y \\
& W=m g \int_{0}^{y} d y=m g y=m g a \sin \theta
\end{aligned}
$$

2) The work of R_{N} force is:

$W_{R}=\int_{0}^{y} \overrightarrow{R_{N}} \cdot \overrightarrow{d l}=\overrightarrow{0}$ Because $\overrightarrow{R_{N}} \perp \overrightarrow{d l}$
3) Potential energy:
$d E p=-d W \Rightarrow E p=-m g a \cdot \sin \theta+c$
$E_{p}(B)=0, \theta=\pi / 2$ donc $c=m g a$
$\Rightarrow \mathrm{E}_{\mathrm{p}}=\mathrm{mga}(1-\sin \theta)$
4) $\Delta \mathrm{E}_{\mathrm{C}}=\sum \mathrm{W} \Rightarrow \frac{1}{2} \mathrm{mv}_{\mathrm{M}}^{2}=\mathrm{mga} \sin \theta$

$$
V_{M}=\sqrt{2 g a \sin \theta}
$$

5) $E_{m}=E_{c}+E_{P}=m g a=$ cste
6) When E_{P} decreases E_{c} increases while E_{m} remains constant.
7) $\mu=\frac{f}{R_{N}}=\frac{f}{p} \Rightarrow f=\mu m g$

So $\Delta E_{C}=W_{f}=\int_{B}^{C} \vec{f} \cdot \overrightarrow{d l}=-\mu m g d \Rightarrow \frac{1}{2} m v_{B}^{2}=-\mu m g d$
Then $v_{B}=\sqrt{2 a g}$
Note : Replace $\theta=\pi / 2$ in the formula for v_{M}, we find:

$v_{B}=\sqrt{2 a g}$. We cane used also: $E_{m_{B}}=E_{m_{A}} \Rightarrow E_{C_{A}}+E_{P_{A}}=E_{C_{B}}+E_{P_{B}}$
Calculation of $\boldsymbol{\mu}$: we have $\mu=\frac{f}{R_{N}}=\frac{f}{m g}$ because $\mathrm{R}_{\mathrm{N}}=\mathrm{mg}$ (with projection on (oy))

$$
\sum \vec{F}=m \vec{\gamma}=\vec{f}+\vec{P}+\overrightarrow{R_{N}}
$$

Projection on (ox) : $-\mathrm{f}=\mathrm{m} . \gamma$
We have also : $v_{c}^{2}-v_{B}^{2}=2 \gamma \cdot d\left(v_{\mathrm{C}}=0\right)$
$-v_{\boldsymbol{B}}^{2}=2 \gamma . d=-2 a g$ so: $\gamma=\frac{-a g}{d}$ with $-\mathrm{f}=\mathrm{m} . \gamma=\frac{-m a g}{d}$ so $\mathrm{f}=\frac{m a g}{d}$
Then $\mu=\frac{f}{R}=\frac{f}{m g}=\frac{m a g}{m g \cdot d}=\frac{a}{d}=\frac{1}{3}$.

EXERCISE 2

1. Knowing that the coefficient of dynamic friction on plane AB is $\mu_{\mathrm{d}}=0.2$, apply the fundamental principle of dynamics:

- What is the nature of the motion on AB ? $\mathrm{a}=$?

$$
\Sigma \vec{F}=m \vec{a}=\vec{p}+\overrightarrow{R_{N}}+\overrightarrow{F_{f}}
$$

Following (Ox) $-\mathrm{F}_{\mathrm{f}}+\mathrm{p}_{\mathrm{x}}=-\mathrm{F}_{\mathrm{f}}+\mathrm{mg} \sin \alpha=\mathrm{ma}$
Following (Oy) $\quad R_{N}-p_{y}=0 \Rightarrow R_{N}=m g \cos \alpha$
$\mu_{\mathrm{d}}=\operatorname{tg} \varphi=\mathrm{F}_{\mathrm{f}} / \mathrm{R}_{\mathrm{N}} \Rightarrow \mathrm{F}_{\mathrm{f}}=\mathrm{R}_{\mathrm{N}} \operatorname{tg} \varphi=\mu_{\mathrm{d}} \mathrm{mg} \cos \alpha$
$-\mu_{\mathrm{d}} \mathrm{mg} \cos \alpha+\mathrm{mg} \sin \alpha=\mathrm{ma} \Rightarrow \mathrm{a}=\mathrm{g} .\left(\sin \alpha-\mu_{\mathrm{d}} \cos \alpha\right)$. So: $\mathbf{a}=\mathbf{3 . 2 6} \mathbf{~ m} / \mathbf{s}^{2}$.

- Calculate the speed of the block when it reaches point B.

$$
\begin{aligned}
& v_{B}^{2}-v_{A}^{2}=2 a l \Rightarrow v_{B}^{2}=2 a l=2 a\left(\frac{h}{\sin \alpha}\right) \\
& v_{B}=\sqrt{2 a\left(\frac{h}{\sin \alpha}\right)}=8.074 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. $\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{B}}$ because we have an MRU (principle of inertia or Newton's 1st law)

We calculate the compression distance of the spring:

$$
\begin{gathered}
\Delta E c=\Sigma W_{f_{\text {ext }}} \Rightarrow E c_{D}-E c_{C}=W_{p}+W_{F r}+W_{R N} \\
-\frac{1}{2} k x^{2}=-\frac{1}{2} m v_{c}^{2} \text { so }: x=\sqrt{\frac{m v_{c}^{2}}{k}}=1.8 \mathrm{~m}
\end{gathered}
$$

$2^{\text {nd }}$ Method : Between points C and D
$E_{M_{C}}=E_{M_{D}} \Rightarrow E_{C_{C}}+E_{P_{C}}=E_{C_{D}}+E_{P_{D}} \Rightarrow \frac{1}{2} k x^{2}=\frac{1}{2} m v_{c}^{2}$ So; $x=\sqrt{\frac{m v_{c}^{2}}{k}}=1.8 \mathrm{~m}$

EXERCISE 3

1- According to the principle of conservation of mechanical energy between two points A and B :

$$
E_{M_{A}}=E_{M_{B}} \Rightarrow E_{C_{A}}+E_{P_{A}}=E_{C_{B}}+E_{P_{B}}
$$

So : $E_{C_{A}}=E_{C_{B}}+E_{P_{B}}$
Because $E_{C_{A}}=0\left(v_{A}=0\right)$ because the material point is launched without initial velocity
With $h_{B}=R \cos \theta$
So ; $\left({ }^{*}\right) \Rightarrow m g R=\frac{1}{2} m v_{B}^{2}+m g R \cos \theta$
Then: $g R=\frac{1}{2} v_{B}^{2}+\mathrm{g} \operatorname{Rcos} \theta\left({ }^{*}\right) \Rightarrow v_{B}^{2}=2(g R-g R \cos \theta)$

$$
\Rightarrow v_{B}=\sqrt{2(g R-g R \cos \theta)}
$$

2- According to the fundamental principle of dynamics :

$$
\Sigma \vec{F}=m \vec{a} \Rightarrow \vec{N}+\vec{p}=m \vec{a}
$$

We choose a reference frame consisting of the axis (OT) tangent to the half-sphere and the axis (ON) following the radius and in the direction of \vec{N} :

Projecting onto (ON) :
$\mathrm{N}-\mathrm{p} \cos \theta=\mathrm{ma}_{\mathrm{N}} \Rightarrow N-m g \cos \theta=-m \frac{v^{2}}{R}$
3- When point P leaves the sphere $\mathrm{N}=0$ so :
$m g \cos \theta=m \frac{v_{p}^{2}}{R} \Rightarrow v_{p}^{2}=R g \cos \theta$
$\left(^{*}\right) \Rightarrow R=\frac{1}{2} R g \cos \theta+\mathrm{gR} \cos \theta \Rightarrow \cos \theta=\frac{2}{3}$ Donc $\theta_{0}=48^{\circ}$
The material point P leaves the sphere at height: $\mathrm{h}_{\mathrm{P}}=\frac{2}{3} R$
The angle relative to the horizontal at which the point leaves the half-sphere is: $90-48=52$
The velocity of the material point at this point:
$v_{p}^{2}=R g \cos \theta \Rightarrow v_{p}=\sqrt{\frac{2}{3} R g}$
4. The velocity of the material point at axis (ox) is:
$v_{p}^{2}=R g \cos 0 \Rightarrow v_{p}=\sqrt{R g}$

