

d

С

R

<u>SW n° 06 of Mechanic</u> <u>Work and Energy</u>

Exercise 1

A particle of mass m, initially at rest in A, slides without friction on the circular surface AOB of radius a.

1) Determine the work of weight from A to M.

2) Determine the work of the surface-particle contact force m.

3) Determine the potential energy E_p of m at the point $M(E_p(B) = 0)$.

4) Use the kinetic energy theorem to determine the

speed of m at point M, deduce its kinetic energy E_c .

5) Calculate the mechanical energy E_m .

6) Show E_c , E_p and E_m ($0 < \theta < \pi 2$). Discuss.

7) The circular surface AOB is connected to a horizontal part BC, there is friction between B and C, the particle stops at a distance d from B. Determine the coefficient of kinetic friction. Given d = 3a = 3m.

M(m)

Exercise 2

Consider a small block of mass m =5kg dropped without initial velocity at point A of an inclined plane at an angle α =30° to the horizontal. Point A is at a height h₀=5m from the horizontal.

1- Knowing that the coefficient of dynamic friction on plane AB is μ_d =0.2, applying the fundamental principle of dynamics:

- What is the nature of the motion on plane AB?

- Calculate the speed of the block when it reaches point B.

2- After passing through point B at speed V_B , the mass arrives at point C. Knowing that the coefficient of friction is negligible on plane BC :

- Deduce the speed at point C?

- Calculate the maximum compression of the spring, given a stiffness constant equal to k=100N/m? (g =10 m/s²).

Exercise 3

A piece of ice M of mass m slides without friction over the outer surface of an igloo, which is a halfsphere of radius r with a horizontal base.

At t=0, it is released from point A without any initial velocity.

- Find the expression for the velocity at point B, as a function of g, r and θ .
- Using the fundamental relation of dynamics, determine

the expression of $|\vec{N}|$ the reaction of the igloo on M at point B as a function of velocity v_B.

- At what height does M leave the sphere?
- At what speed does M arrive at the axis (Ox)?

Corrected exercises

EXERCISE 1

1) The work of \vec{p} from A to M is: $dW = \vec{p}. d\vec{l}$ with $p = mg \vec{j}$ $\vec{dl} = dx\vec{i} + dy\vec{j}$ so dW = mgdy $W = mg \int_0^y dy = mgy = mg \ a \ sin\theta$

2) The work of R_N force is:

$$W_R = \int_0^y \overrightarrow{R_N} \cdot \overrightarrow{dl} = \overrightarrow{0} \quad Because \quad \overrightarrow{R_N} \perp \overrightarrow{dl}$$

3) Potential energy:

 $dEp = -dW \Rightarrow Ep = -mg \ a.\sin\theta + c$

$$E_p(B) = 0, \ \theta = \pi/2 \ donc \ c = mga$$

$$\Rightarrow$$
 E_p=mga(1-sin θ)

4)
$$\Delta E_{C} = \sum W \Rightarrow \frac{1}{2} m v_{M}^{2} = mga \sin\theta$$

 $V_{M} = \sqrt{2ga \sin\theta}$

5) $E_m = E_c + E_P = mg \ a = \text{cste}$

Projection on (ox) : $-f=m.\gamma$

6) When E_P decreases E_c increases while E_m remains constant.

7)
$$\mu = \frac{f}{R_N} = \frac{f}{p} \Rightarrow f = \mu mg$$

So $\Delta E_C = W_f = \int_B^C \vec{f} \cdot \vec{dl} = -\mu mgd \Rightarrow \frac{1}{2}mv_B^2 = -\mu mgd$
Then $v_B = \sqrt{2ag}$

Note : Replace $\theta = \pi/2$ in the formula for v_M , we find :

$$v_B = \sqrt{2ag}$$
. We can used also: $E_{m_B} = E_{m_A} \Rightarrow E_{C_A} + E_{P_A} = E_{C_B} + E_{P_B}$

Calculation of \mu: we have $\mu = \frac{f}{R_N} = \frac{f}{mg}$ because $R_N = mg$ (with projection on (oy))

$$\sum \vec{F} = m\vec{\gamma} = \vec{f} + \vec{P} + \overrightarrow{R_N}$$

We have also:
$$v_c^2 - v_B^2 = 2\gamma \cdot d \text{ (v}_C = 0)$$

 $-v_B^2 = 2\gamma \cdot d = -2ag \text{ so: } \gamma = \frac{-ag}{d} \text{ with } -f=m.\gamma = \frac{-mag}{d} \text{ so } f=\frac{mag}{d}$
Then $\mu = \frac{f}{R} = \frac{f}{mg} = \frac{mag}{mg.d} = \frac{a}{d} = \frac{1}{3}$.

EXERCISE 2

1. Knowing that the coefficient of dynamic friction on plane AB is $\mu_d=0.2$, apply the fundamental principle of dynamics:

- What is the nature of the motion on AB? **a= ?**

$$\Sigma \vec{F} = m\vec{a} = \vec{p} + \overrightarrow{R_N} + \overrightarrow{F_I}$$

Following (Ox) $-F_f + p_x = -F_f + m g \sin \alpha = ma$

Following (Oy) $R_N - p_y=0 \Rightarrow R_N = m g \cos \alpha$

 $\mu_d \!\!=\!\! tg \phi \!\!= F_f / \: R_N \Rightarrow F_f \!\!= R_N \: tg \: \phi \;\; = \; \mu_d \: m \: g \: cos \alpha$

- μ_d m g cos α + m g sin α =ma \Rightarrow a=g.(sin α - μ_d cos α). So: a = 3.26 m/s² ·

- Calculate the speed of the block when it reaches point B.

$$v_B^2 - v_A^2 = 2al \Rightarrow v_B^2 = 2al = 2a(\frac{h}{sina})$$

$$v_B = \sqrt{2a(\frac{h}{sin\alpha})} = 8.074 \ m/s$$

2. $V_c=V_B$ because we have an MRU (principle of inertia or Newton's 1st law) We calculate the compression distance of the spring:

$$\Delta Ec = \Sigma W_{f_{ext}} \Rightarrow Ec_D - Ec_C = W_p + W_{Fr} + W_{RN}$$
$$-\frac{1}{2}kx^2 = -\frac{1}{2}mv_c^2 \text{ so } : x = \sqrt{\frac{mv_c^2}{k}} = 1.8 m$$

2nd Method : Between points C and D

1- According to the principle of conservation of mechanical energy between two points A and B:

$$E_{M_A} = E_{M_B} \Rightarrow E_{C_A} + E_{P_A} = E_{C_B} + E_{P_B}$$

 $So: E_{C_A} = E_{C_B} + E_{P_B}$

Because $E_{C_A} = 0$ ($v_A = 0$) because the material point is launched without initial velocity With $h_B = Rcos\theta$

So ; (*) \Rightarrow $mgR = \frac{1}{2}mv_B^2 + mg R\cos\theta$

Then: $gR = \frac{1}{2}v_B^2 + g \operatorname{Rcos}\theta$ (*) $\Rightarrow v_B^2 = 2(gR - gR\cos\theta)$

$$\Rightarrow v_B = \sqrt{2(gR - gRcos\theta)}$$

2- According to the fundamental principle of dynamics :

$$\Sigma \vec{F} = m\vec{a} \Rightarrow \vec{N} + \vec{p} = m\vec{a}$$

We choose a reference frame consisting of the axis (OT) tangent to the half-sphere and the axis (ON) following the radius and in the direction of \vec{N} :

Projecting onto (ON):

N-p $\cos\theta = \max_{N} \Rightarrow N - mg\cos\theta = -m\frac{v^2}{R}$

3- When point P leaves the sphere N=0 so :

 $mg\cos\theta = m\frac{v_p^2}{R} \Rightarrow v_p^2 = Rg\cos\theta$ (*) $\Rightarrow R = \frac{1}{2}R \ g\cos\theta + g \operatorname{Rcos} \theta \Rightarrow \ \cos\theta = \frac{2}{3} \operatorname{Donc} \theta_0 = 48^\circ$ The material point P leaves the sphere at height: $h_p = \frac{2}{3}R$

The angle relative to the horizontal at which the point leaves the half-sphere is: 90-48=52The velocity of the material point at this point:

$$v_p^2 = Rg\cos\theta \Rightarrow v_p = \sqrt{\frac{2}{3}Rg}$$

4. The velocity of the material point at axis (ox) is:

$$v_p^2 = Rg\cos 0 \Rightarrow v_p = \sqrt{Rg}$$