Supervised work correction $\mathbf{N}^{\circ} 2$ of Mechanics

Vector analysis

Exercice 1:

We are $\overrightarrow{r_{1}}=\vec{\imath}+3 \vec{\jmath}-2 \vec{k}\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right) \quad \overrightarrow{r_{2}}=4 \vec{\imath}-2 \vec{\jmath}+2 \vec{k}\left(\begin{array}{c}4 \\ -2 \\ 2\end{array}\right) \quad$ and $\quad \overrightarrow{r_{3}}=3 \vec{\imath}-\vec{\jmath}+2 \vec{k}\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$
1- Vector representation $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ and $\overrightarrow{r_{3}}$:

2- The magnitudes of :

$$
\begin{gathered}
\vec{A}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \Rightarrow|\vec{A}|=\|\vec{A}\|=\sqrt{x^{2}+y^{2}+z^{2}} \\
\left|\overrightarrow{r_{1}}\right|=\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}=\sqrt{1+9+4}=\sqrt{14} \\
\left|\overrightarrow{r_{2}}\right|=\sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}=\sqrt{16+4+4}=\sqrt{24} \\
\left|\overrightarrow{r_{1}}\right|=\sqrt{x_{3}^{2}+y_{3}^{2}+z_{3}^{2}}=\sqrt{9+1+4}=\sqrt{14}
\end{gathered}
$$

3- $\overrightarrow{r_{1}} \cdot \overrightarrow{r_{2}}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=4-6-4=-6$
and $\overrightarrow{r_{1}} \wedge \overrightarrow{r_{2}}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 3 & -2 \\ 4 & -2 & 2\end{array}\right|=\left|\begin{array}{cc}3 & -2 \\ -2 & 2\end{array}\right| \imath\left|\begin{array}{cc}1 & -2 \\ 4 & 2\end{array}\right| \vec{\jmath}+\left|\begin{array}{cc}1 & 3 \\ 4 & -2\end{array}\right| \vec{k}$

$$
\begin{gathered}
\Rightarrow \overrightarrow{r_{1}} \wedge \overrightarrow{r_{2}}=(3.2-(-2 .(-2))) \vec{\imath}-(1.2-((-2) \cdot 4)) \vec{\jmath}+(1 .(-2)-(3.4)) \\
\Rightarrow \overrightarrow{r_{1}} \wedge \overrightarrow{r_{2}}=2 \vec{\imath}-10 \vec{\jmath}-14 \vec{k}
\end{gathered}
$$

Exercice 2:

We give the three vectors $\overrightarrow{V_{1}}(1,1,0), \overrightarrow{V_{2}}(0,1,0)$ and $\overrightarrow{V_{3}}(0,0,2)$.

1. Calculates the normes $\left\|\overrightarrow{V_{1}}\right\|,\left\|\overrightarrow{V_{2}}\right\|$ and $\left\|\overrightarrow{V_{3}}\right\|$:

Let's calculate the norms of the various vectors and the unit vectors of their respective directions.

$$
\begin{aligned}
& \left\|\overrightarrow{V_{1}}\right\|=\sqrt{1^{2}+1^{2}+0^{2}}=\sqrt{2} \Rightarrow \overrightarrow{v_{1}}=\frac{\overrightarrow{V_{1}}}{\left\|\overrightarrow{V_{1}}\right\|} ; \overrightarrow{v_{1}}\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
& \left\|\overrightarrow{V_{2}}\right\|=\sqrt{0^{2}+1^{2}+0^{2}}=1 \Rightarrow \overrightarrow{v_{2}}=\frac{\overrightarrow{V_{2}}}{\left\|\overrightarrow{V_{2}}\right\|}=\vec{\jmath} ; \overrightarrow{v_{2}}(0,1,0) \\
& \left\|\overrightarrow{V_{3}}\right\|=\sqrt{0^{2}+0^{2}+2^{2}}=\sqrt{4}=2 \Rightarrow \overrightarrow{v_{3}}=\frac{\overrightarrow{V_{3}}}{\left\|\overrightarrow{V_{3}}\right\|} ; \overrightarrow{v_{3}}(0,0,1)
\end{aligned}
$$

2. Let's calculate $\cos \left(\overrightarrow{v_{1}, \overrightarrow{v_{2}}}\right)$ as follows :

$$
\begin{gathered}
\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=\frac{\sqrt{2}}{2} \text { and } \overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=\left\|\overrightarrow{v_{1}}\right\| \cdot\left\|\overrightarrow{v_{2}}\right\| \cdot \cos \left(\overrightarrow{v_{1}, v_{2}}\right) \\
\Rightarrow \cos \left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right)=\frac{\sqrt{2}}{2}
\end{gathered}
$$

3. We have a :

$$
\begin{gathered}
\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=\frac{\sqrt{2}}{2} \\
\overrightarrow{v_{2}} \wedge \overrightarrow{v_{3}}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| \vec{\imath}+0 \vec{\jmath}+0 \vec{k}=\vec{\imath} \\
\Rightarrow \overrightarrow{v_{2}} \wedge \overrightarrow{v_{3}}=\vec{\imath}(1,0,0) \\
\overrightarrow{v_{1}} \cdot\left(\overrightarrow{v_{2}} \wedge \overrightarrow{v_{3}}\right)=1 \times 1+1 \times 0+0 \times 0=1
\end{gathered}
$$

- The first term represents the scalar product between the vectors $\overrightarrow{v_{1}}$ et $\overrightarrow{v_{2}}$ is equal to the product of the projection modulus of $\overrightarrow{v_{1}}$ on $\overrightarrow{v_{2}}$ multiplied by the magnitude of $\overrightarrow{v_{2}}$.
- The second term is the vector product between $\overrightarrow{v_{2}}$ et $\overrightarrow{v_{3}}$.
- The last term is the mixed product between $\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right)$ and is none other than the volume of the parallelepiped built on the basis of the three vectors.

Exercice 3 :

$\mathrm{A}(2,0,0), \mathrm{B}(2,-2,0)$ and $\mathrm{C}(2,3,-1)$.

1. The vector product $\overrightarrow{O A} \wedge \overrightarrow{O B}$:

$$
\overrightarrow{O A}\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right) ; \overrightarrow{O B}\left(\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right) \text { so } \overrightarrow{O A} \Lambda \overrightarrow{O B}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 0 & 0 \\
2 & -2 & 0
\end{array}\right|=-4 \vec{k}
$$

The area of the triangle (OAB) is half the area of the parallelogram formed by the two vectors $\overrightarrow{O A}$ et $\overrightarrow{O B}$
$\mathrm{S}(\mathrm{OAB})=\frac{|\overrightarrow{O A} \Lambda \overrightarrow{O B}|}{2}=\frac{4}{2}=2$
2. The mixed product $(\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C})$, and the volume of the parallelepiped built on the vectors.

$$
(\overrightarrow{O A} \Lambda \overrightarrow{O B}) \cdot \overrightarrow{O C}=\left(\begin{array}{c}
0 \\
0 \\
-4
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right)=4
$$

So the volume of the parallelepiped built on the vectors equal 4.

Exercice 4 :

Let be a vector $\vec{U}=(t \vec{\imath}+3 \vec{\jmath}) /\left(\sqrt{t^{2}+9}\right)$
1- \vec{U} is a unit vector?
Check that $|\vec{U}|=1 \quad$ or $|\vec{U}|=\sqrt{\frac{1}{\left(t^{2}+9\right)}\left(t^{2}+9\right)}=1$
So \vec{U} is an unit vector.
2- The derivative of \vec{U} :

$$
\begin{aligned}
& \frac{d \vec{u}}{d t}=\frac{d}{d t}\left(\frac{t}{\left(\sqrt{t^{2}+9}\right)}\right) \vec{\imath}+\frac{d}{d t}\left(\frac{3}{\left(\sqrt{t^{2}+9}\right)}\right) \vec{\jmath} \\
& \Rightarrow \frac{d \vec{u}}{d t}=\left(\frac{t^{2}-t^{2}+9}{\left(t^{2}+9\right)^{3 / 2}}\right) \vec{\imath}+\left(\frac{-3 t}{\left(t^{2}+9\right)^{3 / 2}}\right) \vec{\jmath} \\
& \Rightarrow \frac{d \vec{u}}{d t}=\left(\frac{9}{\left(t^{2}+9\right)^{3 / 2}}\right) \vec{\imath}+\left(\frac{-3 t}{\left(t^{2}+9\right)^{3 / 2}}\right) \vec{\jmath}
\end{aligned}
$$

