## Correction of supervised work $N^{\circ} 1$ of Mecanics

## Dimensional analysis and uncertainty calculation

## Exercice 1

- Surface :

We have $[1]=\mathrm{L},[\mathrm{t}]=\mathrm{T}$ and $[\mathrm{m}]=\mathrm{M}$.
[Physical quantities] $=\mathrm{M}^{\mathrm{x}} \mathrm{L}^{\mathrm{y}} \mathrm{T}^{\mathrm{z}}$
$S=l \times l \quad \Rightarrow \quad[\mathrm{~S}]=\mathrm{L} . \mathrm{L}=\mathrm{L}^{2} \quad \Rightarrow \quad[\mathrm{~S}]=\mathrm{L}^{2} \quad\left(\mathrm{~m}^{2}\right)$

- Volume :
$\mathrm{V}=1 \times 1 \times 1 \quad \Rightarrow \quad[\mathrm{~S}]=\mathrm{L} . \mathrm{L} \cdot \mathrm{L}=\mathrm{L}^{3} \quad \Rightarrow \quad[\mathrm{~V}]=\mathrm{L}^{3} \quad\left(\mathrm{~m}^{3}\right)$
- Density :
$\rho=\frac{m}{V} \quad$ so $\quad[\rho]=\frac{[m]}{[V]}=\frac{M}{L^{3}}=M L^{-3} \Rightarrow \quad[\rho]=\mathrm{ML}^{-3} \quad\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
- Frequency:
$f=\frac{1}{T} \Rightarrow[f]=\frac{1}{[T]}=\frac{1}{T}=T^{-1} \quad \Longrightarrow \quad[\mathrm{f}]=\mathrm{T}^{-1} \quad\left(\mathrm{~s}^{-1}\right.$ or Hertz $)$
(Period $[T]=T$; unit is $<\mathrm{s} »$ )
- Linear velocity:
$v=\frac{d x}{d t} \Rightarrow[v]=\frac{[x]}{[t]}=\frac{L}{T}=L T^{-1} \quad \Rightarrow \quad[v]=L T^{-1} \quad(\mathrm{~m} . / \mathrm{s})$
- Angulaire velocity :
$\omega=\theta \cdot \frac{d \theta}{d t}=\frac{v}{R} \Rightarrow[\omega]=\frac{[\theta]}{[t]}=\frac{1}{T}=T^{-1} \quad \Rightarrow \quad[\omega]=\mathrm{T}^{-1}(\mathrm{Rd} / \mathrm{s})$
$[$ angle $]=1 i$ and its unit is the radian (rad).
- Lineair acceleration:
$a=\frac{d v}{d t} \Rightarrow[a]=\frac{[d v]}{[d t]}=\frac{L T^{-1}}{T}=L T^{-2} \Rightarrow[a]=L T^{-2}\left(\mathrm{~m} . / \mathrm{s}^{2}\right)$
- Angulaire acceleration :

$$
\omega^{\prime}=\theta^{\prime \prime}=\frac{d \theta}{d t} \Rightarrow\left[\omega^{\cdot}\right]=\frac{[d \theta \cdot]}{[d t]}=\frac{T^{-1}}{T}=T^{-2} \Rightarrow[\omega]=\mathrm{T}^{-2} \quad\left(\mathrm{Rd} . / \mathrm{s}^{2}\right)
$$

- Force :
$\mathrm{F}=\mathrm{m} \times \mathrm{a} \Rightarrow[\mathrm{F}]=[\mathrm{m}] \times[\mathrm{a}]=\mathrm{M} . \mathrm{L} \cdot \mathrm{T}^{-2} \Rightarrow[\mathrm{~F}]=\mathrm{MLT}^{-2}\left(\mathrm{~kg} . \mathrm{m} \cdot \mathrm{s}^{-2}\right.$ or Newton $)$
- Work:
$\mathrm{W}=\mathrm{F} \times \mathrm{d} \times \cos \alpha \Rightarrow[\mathrm{W}]=[\mathrm{F}] \times[\mathrm{d}] \times[\cos \alpha]=\mathrm{MLT}^{-2} \cdot \mathrm{~L} .1=\mathrm{ML}^{2} \mathrm{~T}^{-2} \quad\left(\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}\right.$ or Joule $)$
- Energy :
$E_{C}=(1 / 2) \cdot m \cdot v^{2} \Rightarrow[E]=[1 / 2] \cdot[m] \cdot[v]^{2}=M L^{2} T^{-2} \quad($ Joule $)$
$\mathrm{E}_{\mathrm{P}}=\mathrm{m} \cdot \mathrm{g} \cdot \mathrm{h} \Rightarrow[\mathrm{E}]=[\mathrm{m}] \cdot[\mathrm{g}] \cdot[\mathrm{h}]=\mathrm{M} \cdot \mathrm{LT}^{-2} \cdot \mathrm{~L}=\mathrm{ML}^{2} \mathrm{~T}^{-2} \quad($ Joule $)$
- Power:

$$
\mathrm{P}=\mathrm{W} / \mathrm{t} \Rightarrow[\mathrm{P}]=[\mathrm{W}] /[\mathrm{t}]=\left(\mathrm{ML}^{2} \mathrm{~T}^{-2}\right) / \mathrm{T}=\mathrm{ML}^{2} \mathrm{~T}^{-3}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-3} \text { or Watt }\right)
$$

- Pressure:
$\mathrm{P}=\mathrm{F} / \mathrm{S} \Rightarrow[\mathrm{P}]=[\mathrm{F}] /[\mathrm{S}]=\left(\mathrm{MLT}^{-2}\right) / \mathrm{L}^{2}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}\left(\mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2}\right.$ or Pascal $)$.


## Summary :

| Physical Quantities | Symbol | Formula used | Dimension | Unit (SI) |
| :---: | :---: | :---: | :---: | :---: |
| Surface | S | $1 \times 1$ | L ${ }^{2}$ | $\mathrm{m}^{2}$ |
| Volume | V | $1 \times 1 \times 1$ | $\mathrm{L}^{3}$ | $\mathrm{m}^{3}$ |
| Density | $\rho$ | $\mathrm{m} / \mathrm{V}$ | $\mathrm{ML}^{-3}$ | Kg. $/ \mathrm{m}^{3}$ |
| Frequency | F | 1/T | $\mathrm{T}^{-1}$ | $\mathrm{s}^{-1}$ or hertz |
| Linear vilocity | V | dx/dt | $\mathrm{LT}^{-1}$ | $\mathrm{m} / \mathrm{s}^{1}$ |
| Angular Vilocity | $\Omega$ | $\mathrm{d} \theta / \mathrm{dt}$ | $\mathrm{T}^{-1}$ | Rd./s ${ }^{1}$ |
| Linear Acceleration | $\gamma$ | dv/dt | $\mathrm{LT}^{-2}$ | $\mathrm{m} . / \mathrm{s}^{2}$ |
| Angular Acceleration | $\omega$ | $\mathrm{d} \theta / \mathrm{dt}$ | $\mathrm{T}^{-2}$ | Rd./s ${ }^{2}$ |
| Force | F | m.a | $\mathrm{MLT}^{-2}$ | Newton |
| Work | W | F.d | $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ | Joule |
| Energy | E | (1/2) $\mathrm{mv}^{2}$ | $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ | Joule |
| Power | P | W/t | $\mathrm{ML}^{2} \mathrm{~T}^{-3}$ | Watt |
| Pressure | $\mathscr{P}$ | F/S | $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$ | Pascal |

## Exercice 2

We have $\left(P+\frac{a}{V^{2}}\right) \times(V-b)=C$
$\mathrm{G}=\mathrm{A}+\mathrm{B}$ or $\mathrm{G}=\mathrm{A}-\mathrm{B}$ then $[\mathrm{G}]=[\mathrm{A}]=[\mathrm{B}]$
$[\mathrm{b}]=[\mathrm{V}]=\mathrm{L}^{3}$
$\left[\frac{a}{V^{2}}\right]=[\mathrm{P}]=\frac{[a]}{[V]^{2}} \Rightarrow[\mathrm{a}]=[\mathrm{P}] \times[\mathrm{V}]^{2}=\mathrm{M} \cdot \mathrm{L}^{-1} \mathrm{~T}^{-2} \cdot \mathrm{~L}^{6}=\mathrm{M} \cdot \mathrm{L} \cdot{ }^{5} \mathrm{~T}^{-2}$

$$
[C]=\left[P+\frac{a}{V^{2}}\right] \times[V-b]
$$

On the other hand : $\left[P+\frac{a}{V^{2}}\right]=[p]=\left[\frac{a}{V^{2}}\right]$ et $[V-b]=[V]=[b]$
Et $[\mathrm{C}]=[\mathrm{P}] \times[\mathrm{V}]=\mathrm{ML}^{-1} \mathrm{~T}^{-2} . \mathrm{L}^{3}=\mathrm{ML}^{2} \mathrm{~T}^{-2}$

## Exercice 3

Check the homogeneity of this formula: $p=\rho g h_{1}+h_{2} F$
Such as: P a pressure, g an acceleration of gravity, $\mathrm{h}_{1}$ and $\mathrm{h}_{2}$ are heights and F a force.
We have $\left\{\begin{array}{c}{[\mathrm{P}]=\mathrm{M} L^{-1} T^{-2}} \\ {[\mathrm{~g}]=L T^{-2}} \\ {\left[h_{1}\right]=\left[h_{2}\right]=L} \\ {[F]=M L T^{-2}} \\ {[\rho]=M L^{-3}}\end{array}\right.$
This expression is homogenious if: $[p]=\left[\rho g h_{1}\right]=\left[h_{2} F\right]$

$$
\begin{gathered}
{\left[\rho g h_{1}\right]=M L^{-3} \cdot L \cdot L T^{-2}=M L^{-1} T^{-2}=[\mathrm{P}]} \\
\text { et }\left[h_{2} F\right]=M L^{2} T^{-2} \neq M L^{-1} T^{-2}
\end{gathered}
$$

So the equation is heterogeneous (not homogeneous).

## Exercice 4

We have: $F=-6 \pi \eta r v$
1- $[\eta]=$ ?

$$
F=-6 \pi \mu r v \Rightarrow \eta=-\frac{F}{6 \pi r v}
$$

$$
[\eta]=\frac{[F]}{[r][v]} \quad \text { with }\left\{\begin{array}{c}
{[r]=L} \\
{[F]=M L T^{-2}} \\
{[v]=L T^{-1}} \\
{[-6 \pi]=1}
\end{array}\right.
$$

Where

$$
[\eta]=\frac{M L T^{-2}}{L . L T^{-1}}=M L^{-1} T^{-1}
$$

2- We have $v=a\left(1-\exp \left(-\frac{t}{b}\right)\right)$
we're looking for the dimension of [a] et [b]:

The argument of the exponential is therefore dimensionless:

$$
\begin{aligned}
& \text { so }[\mathrm{v}]=\mathrm{LT}^{-1}=[\mathrm{a}] \Rightarrow[\mathrm{a}]=\mathrm{LT}^{-1} \\
& \qquad \begin{array}{c}
{\left[\exp \left(-\frac{t}{b}\right)\right]=1 \Rightarrow}
\end{array}\left[-\frac{t}{b}\right]=\left[-1 \cdot \frac{t}{b}\right]=[-1]\left[\frac{t}{b}\right]=\left[\frac{t}{b}\right]=1 \\
& \\
& \Rightarrow\left[\frac{t}{b}\right]=\frac{[t]}{[b]}=1 \\
& {[\mathrm{~b}]=[\mathrm{t}]=\mathrm{T}}
\end{aligned}
$$

## Exercice 5:

$\mathrm{f}=\mathrm{K} \mathrm{F}^{\mathrm{a}} \mathrm{L}^{\mathrm{b}} \rho^{\mathrm{c}}$; This function is therefore homogeneous $\quad[f]=[k][F]^{a}[L]^{b}[\rho]^{c}$
with $\left\{\begin{array}{c}{[F]=[m \cdot a]=[m][a]=M . L T^{-2}} \\ {[L]=L \text { et }[k]=1} \\ {[\rho]=\left[\frac{m}{V}\right]=M L^{-3}} \\ {[f]=T^{-1}}\end{array}\right.$
so $[f]=\left(M L T^{-2}\right)^{a}(L)^{b}\left(M L^{-3}\right)^{c}=T^{-1}$
$\Rightarrow M^{0} L^{0} T^{-1}=M^{a+c} L^{a+b-3 c} T^{-2 a}$
By identification: $\left\{\begin{array}{c}a+c=0 \\ a+b-3 c=0 \\ -2 a=-1\end{array}\right.$
$\Rightarrow\left\{\begin{array}{c}a=1 / 2 \\ b=-a+3 c=-\frac{4}{2}=-2 \\ c=-a=-1 / 2\end{array}\right.$

$$
\begin{gathered}
\mathrm{F}=\mathrm{K}^{1 / 2} \mathrm{~L}^{-2} \rho^{-1 / 2}=K \sqrt{F} \frac{1}{L^{2}} \frac{1}{\sqrt{\rho}} \\
\text { So } \quad f=k \frac{\sqrt{F}}{L^{2} \sqrt{\rho}}
\end{gathered}
$$

## Exercice 6

The period of a pendulum is written :
$T=K \eta^{x} R^{y} \rho^{z}$ avec $[\eta]=M L^{-1} T^{-1}$
Suppose the relationship is homogeneous so $[T]=[k][\eta]^{x}[R]^{y}[\rho]^{z}$
with $\left\{\begin{array}{c}{[\eta]=M L^{-1} T^{-1}} \\ {[R]=L \text { et }[k]=1} \\ {[\rho]=\left[\frac{m}{V}\right]=\frac{M}{L^{3}}=M L^{-3}} \\ {[T]=T}\end{array}\right.$
so $[T]=\left(M L^{-1} T^{-1}\right)^{x} L^{y}\left(M L^{-3}\right)^{z}=T$

$$
\begin{gathered}
\left(A^{X} \cdot A^{Y}=A^{X+Y}\right) \\
\Rightarrow T=M^{x} L^{-x} T^{-x} L^{y} \quad M^{z} L^{-3 z} \\
\Rightarrow M^{0} L^{0} T^{1}=M^{x+z} \quad L^{-x+y-3 z} \quad T^{-x} \\
\text { by identification: }\left\{\begin{array}{c}
x+z=0 \\
-x+y-3 z=0 \\
-x=1
\end{array}\right. \\
\Rightarrow\left\{\begin{array}{c}
x=-1 \\
y=x+3 z=2 \\
z=-x=1
\end{array}\right. \\
\Rightarrow T=K \eta^{-1} R^{2} \rho^{1} \\
\text { So } T=k \frac{\rho R^{2}}{\eta}
\end{gathered}
$$

2- The relative uncertainty on $\mathrm{T}=\mathrm{f}(\Delta \eta, \Delta R, \Delta m)$ ?

$$
T=\frac{K \rho R^{2}}{\mu} \quad \text { with } \quad \rho=\frac{m}{V}=\frac{m}{\frac{4}{3} \pi R^{3}}=\frac{3 m}{4 \pi R^{3}} \quad \text { so } T=\frac{3 K m}{4 \pi R \mu}
$$

$$
\begin{aligned}
\Rightarrow \log T=\log \left(\frac{3 m K}{4 \pi R \mu}\right) & =\log 3 K+\log (m)-\log (4 \pi)-\log (R)-\log (\mu) \\
& \Rightarrow \frac{d T}{T}=\frac{d m}{m}-\frac{d R}{R}-\frac{d \mu}{\mu} \\
\Rightarrow & \frac{\Delta T}{T}=\left|\frac{\Delta m}{m}\right|+\left|-\frac{\Delta R}{R}\right|+\left|-\frac{\Delta \mu}{\mu}\right|
\end{aligned}
$$

$\mathrm{m}, \mathrm{R}$, et $\mu$ are positive quantities, hence:

$$
\Rightarrow \frac{\Delta T}{T}=\frac{\Delta m}{m}+\frac{\Delta R}{R}+\frac{\Delta \mu}{\mu}
$$

## Exercice 7

1- The dimension of k :
We have $\left\{\begin{array}{c}{[p]=M \cdot L \cdot T^{-2}} \\ {[\mathrm{~S}]=L^{2}} \\ {[k]=1} \\ {[v]=L \cdot T^{-1}}\end{array}\right.$ and $k=\frac{p}{v^{2} . S} \Rightarrow[k]=\frac{[p]}{[v]^{2} \cdot[s]}$
$\Rightarrow[k]=[p] \cdot[v]^{-2} \cdot[s]^{-1} \Rightarrow[k]=M \cdot L^{-3}$
2- N.A $: v=\sqrt{\frac{P}{K . S}}=3.097 \mathrm{~m} / \mathrm{s}$

3- $\frac{\Delta P}{P}=2 \%=0.02$ and $\frac{\Delta S}{S}=3 \%=0.03$

The logarithmic method is used to calculate the relative uncertainty on $v$ :

$$
\begin{gathered}
v=\sqrt{\frac{P}{K . S}} \Rightarrow \log v=\log \sqrt{\frac{P}{K . S}}=\frac{1}{2} \log P-\frac{1}{2} \log k-\frac{1}{2} \log S \\
\Rightarrow d \log v=\frac{1}{2} d \log P-\frac{1}{2} d \log k-\frac{1}{2} d \log S \\
\frac{d v}{v}=\frac{1}{2} \frac{d p}{p}-\frac{1}{2} \frac{d S}{S} \Rightarrow \frac{\Delta v}{v}=\frac{1}{2}\left|\frac{\Delta p}{p}\right|+\frac{1}{2}\left|-\frac{\Delta S}{S}\right| \Rightarrow \frac{\Delta v}{v}=\frac{1}{2} \frac{\Delta p}{p}+\frac{1}{2} \frac{\Delta S}{S} \text { A.N }: \frac{\Delta v}{v}=0.025
\end{gathered}
$$

Absolute uncertainty on $v$ is given by:

$$
\Delta v=v \cdot \frac{\Delta v}{v}=v *\left(\frac{1}{2} \frac{\Delta p}{p}+\frac{1}{2} \frac{\Delta s}{s}\right)=0.077 \mathrm{~m} / \mathrm{s}
$$

hence the condensed writing of v is given by : $v=(3.097 \pm 0.077) \mathrm{m} / \mathrm{s}$

