Correction of SW N ${ }^{\circ} 3$ of Mechanics

Kinematics of a Material Point

Exercice 1

a- we have $x(t)=2 t^{3}+5 t^{2}+5$ so :
The velocity: $\quad v(t)=\frac{d x}{d t}=6 t^{2}+10 t$
The acceleration: $\quad a(t)=\frac{d v(t)}{d t}=12 t+10$
b- The body's position at time $t_{1}=2 \mathrm{~s}$, as well as its instantaneous velocity and acceleration:
The position : $x(2)=2(2)^{3}+5(2)^{2}+5=41 \mathrm{~m}$
Instantaneous speed: $\quad v(2)=6(2)^{2}+10(2)=44 \mathrm{~m} / \mathrm{s}$
Instantaneous acceleration : $\quad a(2)=12(2)+10=34 \mathrm{~m} / \mathrm{s}^{2}$

- The body's position at time $\mathrm{t} 2=3 \mathrm{~s}$, as well as its instantaneous velocity and acceleration:

Position : $\quad x(3)=2(3)^{3}+5(3)^{2}+5=104 \mathrm{~m}$
Instantaneous speed: $\quad v(3)=6(3)^{2}+10(3)=84 \mathrm{~m} / \mathrm{s}$
Instantaneous acceleration : $a(3)=12(3)+10=46 \mathrm{~m} / \mathrm{s}^{2}$
$c-$ We deduce the speed and average acceleration of the body between t_{1} et t_{2} :
Average speed: $\quad v_{\text {moy }}=\frac{\Delta x}{\Delta t}=\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{\mathrm{t}_{2}-\mathrm{t}_{1}} \Rightarrow v_{\text {moy }}=\frac{104-41}{3-2}=63 \mathrm{~m} / \mathrm{s}$
Average acceleration :

$$
\mathrm{a}_{\text {moy }}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{\mathrm{v}\left(\mathrm{t}_{2}\right)-\mathrm{v}\left(\mathrm{t}_{1}\right)}{\mathrm{t}_{2}-\mathrm{t}_{1}} \Rightarrow \mathrm{a}_{\text {moy }}=\frac{84-44}{3-2}=40 \mathrm{~m} / \mathrm{s}^{2}
$$

Exercice 2

The coordinates of a moving point M in the plane (oxy) are written as :
$x(t)=t+1$ et $y(t)=\left(t^{2} / 2\right)+2$
a- The equation of the trajectory is then written :
(To find the equation of the trajectory, simply find the relationship between $x(t)$ and $y(t)$.
To do this, deduce the time from one equation, $x(t)$ or $y(t)$, and replace it in the other equation).
Here, we'll write t as a function of x :
$t=x-1$ so $y=\frac{(x-1)^{2}}{2}+2=\frac{x^{2}}{2}-x+\frac{5}{2}$
The equation of the trajectory is : $\quad \mathbf{y}(\mathbf{x})=\frac{\mathrm{x}^{2}}{2}-\mathbf{x}+\frac{5}{2}$
b- Components of velocity and acceleration vectors:

- The velocity: $\quad \overrightarrow{v(t)}=v_{x}(t) \vec{\imath}+v_{y}(t) \vec{\jmath}$
$\left\{\begin{array}{l}v_{x}(t)=\frac{d x(t)}{d t}=1 \\ v_{y}(t)=\frac{d y(t)}{d t}=t\end{array}\right.$
The velocity is written by $\overrightarrow{\mathbf{v}(\mathbf{t})}=\overrightarrow{\mathbf{1}}+\mathbf{t} \overrightarrow{\mathbf{j}}$
The velocity module: $|\vec{v}(t)|=\sqrt{1+t^{2}}$
-The acceleration: $\quad \overrightarrow{a(t)}=a_{x}(t) \vec{\imath}+a_{y}(t) \vec{\jmath}$
$\left\{\begin{array}{l}a_{x}(t)=\frac{d v_{x}(t)}{d t}=0 \\ a_{y}(t)=\frac{d v_{y}(t)}{d t}=1\end{array}\right.$
So $\quad \overrightarrow{\mathbf{a}(\mathbf{t})}=\overrightarrow{\mathbf{j}}$
The acceleration module $|\vec{a}(t)|=1$
c- Normal and tangential acceleration:
-Tangential acceleration
$a_{T}=\frac{d|\overrightarrow{v(t)}|}{d t}$ with $|\overrightarrow{v(t)}|=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{1+t^{2}}$

$$
\begin{gathered}
a_{T}=\frac{d\left(\sqrt{1+t^{2}}\right)}{d t}=\frac{2 t}{2 \sqrt{1+t^{2}}} \\
a_{T}=\frac{t}{\sqrt{1+t^{2}}} \quad \text { because }\left(\boldsymbol{U}^{n}\right)^{\prime}=n \boldsymbol{U}^{\prime} U^{n-1}
\end{gathered}
$$

-Normal acceleration :
The accelerations a_{N} and a_{T} are the normal and tangential components of the acceleration. \vec{a} $\left(\vec{a}=a_{T} \overrightarrow{U_{T}}+a_{N} \overrightarrow{U_{N}} \quad \Rightarrow|\vec{a}|=\sqrt{\boldsymbol{a}_{T}^{2}+\boldsymbol{a}_{N}^{2}}\right)$
We have the shape of a right triangle, by applying Pitagort's relation.
$a^{2}=a_{T}^{2}+a_{N}^{2}$
So $\quad a_{N}^{2}=a^{2}-a_{T}^{2}$ ou $|\vec{a}|=\sqrt{\boldsymbol{a}_{T}^{2}+\boldsymbol{a}_{N}^{2}}$

$a_{N}^{2}=1-\left(\frac{t}{\sqrt{1+t^{2}}}\right)^{2}=1-\frac{t^{2}}{1+t^{2}}$
$a_{N}^{2}=\frac{1}{1+t^{2}}$
So $a_{N}=\frac{1}{\sqrt{1+t^{2}}}=\frac{1}{v}$
-The radius of curvature: $a_{N}=\frac{v^{2}}{R}=\frac{1}{v} \Rightarrow R=v^{3}=\left(1+t^{2}\right)^{\frac{3}{2}}$
c- The nature of movement
$\overrightarrow{a(t)} \cdot \overrightarrow{v(t)}=\binom{0}{1} \cdot\binom{1}{t}=1(0)+t(1)=t>0$
The motion is then uniformly accelerated.

Exercice 3:

A particle moves along a trajectory whose equation is $\mathrm{y}=\mathrm{x}^{2}$ so that at each instant $\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{0}=\mathrm{cst}$. If $\mathrm{t}=0, \mathrm{x}_{0}=0$.
a- Let's find the particle's $x(t)$ and $y(t)$ coordinates.

We have the following (Ox) : $v_{x}=v_{0}=\frac{d x}{d t} \Rightarrow \int_{0}^{x} d x=\int_{0}^{t} v_{0} d t$
$\Rightarrow \boldsymbol{x}(\boldsymbol{t})=v_{0} t$

On the other hand: $\mathrm{y}=\mathrm{x}^{2} \Rightarrow y(t)=v_{0}^{2} t^{2}$
So $\left\{\begin{array}{l}\boldsymbol{x}(\boldsymbol{t})=v_{0} t \\ y(t)=v_{0}^{2} t^{2}\end{array}\right.$
b- The velocity and acceleration of the particle.
The velocity
$\left\{\begin{array}{c}v_{x}=\frac{d x}{d t}=v_{0} \\ v_{y}=\frac{d y}{d t}=2 v_{0}^{2} t\end{array} \Rightarrow \overrightarrow{v(t)}=v_{0} \vec{\imath}+2 v_{0}^{2} t \vec{\jmath}\right.$
The velocity module: $|\overrightarrow{v(t)}|=\sqrt{v_{0}^{2}+4 v_{0}^{4} t^{2}}$
The acceleration: $\left\{\begin{array}{c}a_{x}=\frac{d v_{x}}{d t}=0 \\ a_{y}=\frac{d v_{y}}{d t}=2 v_{0}^{2}\end{array} \Rightarrow \overrightarrow{a(t)}=2 v_{0}^{2} \vec{\jmath}\right.$
The acceleration module: $|\overrightarrow{a(t)}|=\sqrt{\left(2 v_{0}^{2}\right)^{2}}=2 v_{0}^{2}$

- Normal and tangential accelerations :
$a_{T}=\frac{d|\overrightarrow{v(t)}|}{d t}=\frac{4 v_{0}^{4} t}{\sqrt{v_{0}^{2}+4 v_{0}^{4} t^{2}}}$
$a_{N}^{2}=a^{2}-a_{T}^{2} \Rightarrow a_{N}^{2}=4 v_{0}^{4}-\frac{16 v_{0}^{8} t^{2}}{v_{0}^{2}+4 v_{0}^{4} t^{2}}$
$\Rightarrow a_{N}^{2}=\frac{4 v_{0}^{6}}{v_{0}^{2}+4 v_{0}^{4} t^{2}}$
So $\quad a_{N}=\frac{2 v_{0}^{3}}{\sqrt{v_{0}^{2}+4 v_{0}^{4} t^{2}}}=\frac{2 v_{0}^{3}}{v}$
$\left(\left(a^{x}\right)^{y}=a^{x \cdot y}\right.$ et $\left.a^{x} \cdot a^{y}=a^{x+y}\right)$
The radius of curvature: $\quad a_{N}=\frac{v^{2}}{R}=\frac{2 v_{0}^{3}}{v} \Rightarrow R=\frac{v^{3}}{2 v_{0}^{3}}$

Exercice 4

A) A material point M is identified by its Cartesian coordinates (x, y):

Find x and y in terms of polar coordinates ρ and θ ??

$$
\begin{equation*}
\overrightarrow{O M}=x \vec{\imath}+y \vec{\jmath} \tag{1}
\end{equation*}
$$

In the othor hand $\overrightarrow{O M}$ is written by projection as:

(1) and (2) $\Rightarrow\left\{\begin{array}{c}x=\rho \cos \theta \\ y=\rho \sin \theta\end{array}\right.$
A. The unit vector \vec{u} as a function of the unit vectors $\vec{\imath}$ and $\vec{\jmath}$: we have $\overrightarrow{O M}=|\overrightarrow{O M}| \vec{u}=\rho \vec{u}=\rho \cos \theta \vec{\imath}+\rho \sin \theta \vec{\jmath}$ so $\vec{u}=\cos \theta \vec{\imath}+\sin \theta \vec{\jmath}$

and

$$
\vec{n}=-\sin \theta \vec{\imath}+\cos \vec{\jmath}
$$

\vec{n} and \vec{u} represent the unit vectors of the polar coordinate basis.

2- Calculate the expression of $d \vec{u} / d \theta$, which this vector represents?

$$
\frac{d \vec{u}}{d \theta}=\frac{d(\cos \theta \vec{\imath}+\sin \theta \vec{\jmath})}{d \theta}=-\sin \theta \vec{\imath}+\cos \vec{\jmath}=\vec{n}
$$

$\frac{d \vec{u}}{d \theta}$ represents a unit vector perpendicular to \vec{u} in the direct direction.
B. The position of point M is given by $\left\{\begin{array}{c}\overrightarrow{O M}=t^{2} \vec{u} \\ \theta=\omega t\end{array} \quad\right.$ (ω constant)

The expression of the velocity vector \vec{v} in polar coordinates is :

$$
\begin{aligned}
\vec{v}=\frac{d \overrightarrow{O M}}{d t} & =\frac{d\left(t^{2} \vec{u}\right)}{d t}=2 t \vec{u}+t^{2} \frac{d \vec{u}}{d t} \\
\frac{d \vec{u}}{d t} & =\frac{d \vec{u}}{d \theta} \cdot \frac{d \theta}{d t}=\vec{n} \cdot \omega \\
\overrightarrow{\boldsymbol{v}} & =\mathbf{2 t} \cdot \overrightarrow{\boldsymbol{u}}+\boldsymbol{t}^{2} \cdot \boldsymbol{\omega} \cdot \overrightarrow{\boldsymbol{n}}
\end{aligned}
$$

Exercice 5

1. A material point M is identified by its Cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).

Write the relationship between Cartesian coordinates and polar coordinates.

$$
\left\{\begin{array}{c}
x=\rho \cos \theta \\
y=\rho \sin \theta \\
z=z_{M}
\end{array}\right.
$$

2. Find the expression of the position vector and deduce the velocity \vec{v} of point M in cylindrical coordinates.

$$
\begin{gathered}
\overrightarrow{O M}=\rho \overrightarrow{U_{\rho}}+z \overrightarrow{U_{z}} \\
\Rightarrow \vec{v}=\frac{\mathrm{d} \overrightarrow{O M}}{\mathrm{dt}}=\frac{\mathrm{d} \rho}{\mathrm{dt}} \overrightarrow{U_{\rho}}+\rho \frac{d \overrightarrow{U_{\rho}}}{d t}+\frac{\mathrm{dz}}{\mathrm{dt}} \overrightarrow{U_{z}}+z \frac{d \overrightarrow{U_{z}}}{d t} \\
\text { on } a \frac{d \overrightarrow{U_{z}}}{d t}=0 \Rightarrow \vec{v}=\dot{\rho} \overrightarrow{U_{\rho}}+\rho \frac{d \theta}{d t} \frac{d \overrightarrow{U_{\rho}}}{d \theta}+\dot{z} \overrightarrow{U_{z}} \\
\Rightarrow \vec{v}=\dot{\rho} \overrightarrow{U_{\rho}}+\rho \dot{\theta} \overrightarrow{U_{\theta}}+\dot{z} \overrightarrow{U_{z}}
\end{gathered}
$$

3. A velocity vector \vec{v} of point M in cylindrical coordinates:

$$
\begin{aligned}
& \text { We have }\left\{\begin{array} { c }
{ \rho = 4 t ^ { 2 } } \\
{ \theta = \omega t } \\
{ z = \sqrt { t } }
\end{array} \quad \text { Hence } \left\{\begin{array}{l}
\frac{d \rho}{d t}=8 t \\
\frac{d \theta}{d t}=\omega \\
\frac{d z}{d t}=\frac{1}{2 \sqrt{t}}
\end{array}\right.\right. \\
& \quad \Rightarrow \vec{v}=\dot{\rho} \overrightarrow{U_{\rho}}+\rho \dot{\theta} \frac{d \overrightarrow{U_{\rho}}}{d \theta}+\dot{z} \overrightarrow{U_{z}}=8 t \overrightarrow{U_{\rho}}+4 t^{2} \cdot \omega \cdot \overrightarrow{U_{\theta}}+\frac{1}{2 \sqrt{t}} \overrightarrow{U_{z}}
\end{aligned}
$$

Exercice 6

$$
\left\{\begin{array}{l}
v_{x}=R \omega \cos (\omega t) \\
v_{y}=R \omega \sin (\omega t)
\end{array}\right.
$$

Knowing that at $\mathrm{t}=0$, the moving body is at the origin $\mathrm{O}(0,0)$,

1. The components of the acceleration vector and its modulus. $\left\{\begin{array}{c}a_{x}=\frac{d v_{x}}{d t}=-R \omega^{2} \sin (\omega t) \\ a_{y}=\frac{d v_{y}}{d t}=R \omega^{2} \cos (\omega t)\end{array}\right.$

$$
\lceil\vec{a}\rceil=\sqrt{\left(-R \omega^{2} \sin (\omega t)\right)^{2}+\left(R \omega^{2} \cos (\omega t)\right)^{2}}=R \omega^{2}
$$

2. The tangential and normal components of acceleration and deduce the radius of curvature.

Tangential acceleration:

$$
\begin{aligned}
& \quad\lceil\vec{v}\rceil=\sqrt{(R \omega \cos (\omega t))^{2}+(R \omega \sin (\omega t))^{2}}=R \omega \\
& a_{T}=\frac{d v}{d t}=\frac{d R \omega}{d t} \Rightarrow a_{T}=0
\end{aligned}
$$

Normale acceleration:
$a_{N}=\frac{v^{2}}{R}=a=R \omega^{2} \operatorname{car} a_{T}=0$ et $R=\frac{v^{2}}{a_{N}}=\frac{R^{2} \omega^{2}}{R \omega^{2}}=\mathrm{R}$

Radius of curvature is R.
3. The components of the position vector

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ v _ { x } = R \omega \operatorname { c o s } (\omega t) } \\
{ v _ { y } = R \omega \operatorname { s i n } (\omega t) }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{d x}{d t}=R \omega \cos (\omega t) \\
\frac{d y}{d t}
\end{array}=R \omega \sin (\omega t)\right.\right.
\end{aligned} \begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
d x=R \omega \cos (\omega t) d t \\
d y=R \omega \sin (\omega t) d t
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
\int d x=R \int \omega \cos (\omega t) d t \\
\int d y=R \int \omega \sin (\omega t) d t
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{c}
x=R \sin (\omega t) \\
y=-R \cos (\omega t)
\end{array}\right.
\end{aligned}
$$

The trajectory equation.

$$
x^{2}+y^{2}=R^{2} \sin ^{2} \omega t+R^{2} \cos ^{2} \omega t \Rightarrow x^{2}+y^{2}=R^{2}
$$

4. The nature of movement

The acceleration $\mathrm{a}=\mathrm{a}_{\mathrm{N}}$ and the equation of the trajectory is $x^{2}+y^{2}=R^{2}$, so the motion is uniformly circular.

Exercice 7

A material point M moves along the OX axis with acceleration $\vec{a}=a \vec{\imath}$ with $\mathrm{a}>0$.
1 - Determine the velocity vector knowing that $v(\mathrm{t}=0)=v_{0}$.

$$
\begin{equation*}
a=\frac{d v}{d t} \Rightarrow \int_{v_{0}}^{v} d v=a \int_{0}^{t} d t \tag{1}
\end{equation*}
$$

$\Rightarrow v-v_{0}=a t$
so $\overrightarrow{\boldsymbol{v}}=\left(\boldsymbol{a t}+\boldsymbol{v}_{0}\right) \overrightarrow{\boldsymbol{\imath}}$
2- The position vector $\overrightarrow{O M}$ knowing that $\mathrm{x}(\mathrm{t}=0)=\mathrm{x}_{0}$.

$$
\begin{gathered}
v=\frac{d x}{d t}=a t+v_{0} \Rightarrow \int_{x_{0}}^{x} d x=\int_{0}^{t}\left(a t+v_{0}\right) d t=a \int_{0}^{t} t d t+v_{0} \int_{0}^{t} d t \\
\Rightarrow x-x_{0}=\left[a \frac{t^{2}}{2}+v_{0} t\right]_{0}^{t} \\
\int x^{n} d x=\frac{x^{n+1}}{n+1} \text { and } \int \frac{d x}{x}=\ln x
\end{gathered}
$$

$$
\begin{equation*}
x=\frac{1}{2} a t^{2}+v_{0} t+x_{0} \tag{2}
\end{equation*}
$$

$$
\Rightarrow \overrightarrow{O M}=\left(\frac{1}{2} a t^{2}+v_{0} t+x_{0}\right) \vec{\imath}
$$

3. Show that $v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right)$

$$
\begin{gathered}
(1) \Rightarrow t=\frac{v-v_{0}}{a} \text { in (2) } x-x_{0}=\frac{1}{2} a\left(\frac{v-v_{0}}{a}\right)^{2}+v_{0}\left(\frac{v-v_{0}}{a}\right)=\frac{v^{2}+v_{0}^{2}-2 v v_{0}}{2 a}+\frac{v v_{0}-v_{0}^{2}}{a} \\
\Rightarrow x-x_{0}=\frac{v^{2}+v_{0}^{2}-2 v v_{0}}{2 a}+\frac{2 v v_{0}-2 v_{0}^{2}}{2 a} \\
\Rightarrow x-x_{0}=\frac{v^{2}-v_{0}^{2}}{2 a}
\end{gathered}
$$

so $2 a\left(x-x_{0}\right)=v^{2}-v_{0}^{2}$
4- For motion to be uniformly accelerated, $\vec{a} \cdot \vec{v}$ must be positive.
For motion to be uniformly retarded, $\vec{a} \cdot \vec{v}$ must be negative.

Exercice 8

The differential of vector $\vec{r}, d \vec{r}=d \vec{l}=d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k}$ can be expressed in cylindrical coordinates as $d \vec{r}=\frac{\partial \vec{r}}{\partial \rho} d \rho+\frac{\partial \vec{r}}{\partial \theta} d \theta+\frac{\partial \vec{r}}{\partial z} d z$.

1. We are looking for the vectors $\frac{\partial \vec{r}}{\partial \rho}, \frac{\partial \vec{r}}{\partial \theta}$ et $\frac{\partial \vec{r}}{\partial z}$.

We are $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$

- The displacement vector in cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) :

$$
d \vec{r}=d \vec{l}=d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k}
$$

- The displacement vector in cylindrical coordinates (ρ, θ, z) :

$$
d \vec{r}=\frac{\partial \vec{r}}{\partial \rho} d \rho+\frac{\partial \vec{r}}{\partial \theta} d \theta+\frac{\partial \vec{r}}{\partial z} d z
$$

Relationships between cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and cylindrical coordinates $(\rho, \theta, \mathrm{z})$ are :

$$
\begin{gathered}
\left\{\begin{array} { c }
{ x = \rho \operatorname { c o s } \theta } \\
{ y = \rho \operatorname { s i n } \theta } \\
{ z = z _ { M } }
\end{array} \Rightarrow \left\{\begin{array}{c}
d x=d \rho \cdot \cos \theta-\rho \cdot \sin \theta \cdot d \theta \\
d y=d \rho \cdot \sin \theta+\rho \cdot \cos \theta \cdot d \theta \\
d z=d z_{M}
\end{array}\right.\right. \\
\Rightarrow d \vec{r}=d \vec{l}=(d \rho \cdot \cos \theta-\rho \cdot \sin \theta \cdot d \theta) \vec{\imath}+(d \rho \cdot \sin \theta+\rho \cdot \cos \theta \cdot d \theta) \vec{\jmath}+d z \vec{k}
\end{gathered}
$$

$$
\begin{align*}
& \Rightarrow d \vec{r}=(\cos \theta \cdot \vec{\imath}+\sin \theta \cdot \vec{\jmath}) d \rho+(-\rho \sin \theta \vec{\imath}+\rho \cdot \cos \theta \cdot \vec{\jmath}) d \theta+d z \vec{k} . \tag{1}\\
& \Rightarrow d \vec{r}=\left(\frac{\partial \vec{r}}{\partial \rho}\right) d \rho+\left(\frac{\partial \vec{r}}{\partial \theta}\right) d \theta+\left(\frac{\partial \vec{r}}{\partial z}\right) d z \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{align*}
$$

With identification between (1) et (2) we'll have :

$$
\Rightarrow\left\{\begin{array}{c}
\frac{\partial \vec{r}}{\partial \rho}=\cos \theta \cdot \vec{\imath}+\sin \theta \cdot \vec{\jmath} \\
\frac{\partial \vec{r}}{\partial \theta}=-\rho \sin \theta \vec{\imath}+\rho \cdot \cos \theta \cdot \vec{\jmath} \\
\frac{\partial \vec{r}}{\partial z}=\vec{k}
\end{array}\right.
$$

2. Deduce Unit Vectors $\overrightarrow{U_{\rho}}, \overrightarrow{U_{\theta}}$ et $\overrightarrow{U_{z}}$ (cylindrical coordinates) as function of $\overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{\jmath}}$ and $\overrightarrow{\mathrm{k}}$ (Cartesian coordinates) :

The displacement vector in cylindrical coordinates is written:

$$
\begin{gather*}
d \vec{r}=d \rho \overrightarrow{U_{\rho}}+\rho d \theta \overrightarrow{U_{\theta}}+d z \vec{k} \ldots \ldots \ldots \ldots \tag{3}\\
\text { (2) and (3) } \Rightarrow\left\{\begin{array}{c}
\overrightarrow{U_{\rho}}=\frac{\partial \vec{r}}{\partial \rho}=\cos \theta \cdot \vec{\imath}+\sin \theta \cdot \vec{\jmath} \\
\overrightarrow{U_{\theta}}=\frac{1}{\rho} \frac{\partial \vec{r}}{\partial \theta}=-\sin \theta \vec{\imath}+\cos \theta \cdot \vec{\jmath} \\
\overrightarrow{U_{z}}=\frac{\partial \vec{r}}{\partial z}=\vec{k}
\end{array}\right.
\end{gather*}
$$

Note :

The unit vectors of the Cartesian coordinates base can be written as a function of the unit vectors of the cylindrical coordinates base from the table below:

$\overrightarrow{\|c\|} \overrightarrow{\boldsymbol{\imath}}$	$\overrightarrow{\boldsymbol{\jmath}}$		
$\overrightarrow{\boldsymbol{u}_{\boldsymbol{\rho}}}$	$\operatorname{Cos} \theta$	$\operatorname{Sin} \theta$	0
$\overrightarrow{\boldsymbol{u}_{\boldsymbol{\theta}}}$	$-\sin \theta$	$\operatorname{Cos} \theta$	0
$\overrightarrow{\boldsymbol{u}_{\mathbf{z}}}$	0	0	1

\vec{\jmath}=\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \overrightarrow{u_{\theta}}

\vec{k}=\overrightarrow{u_{z}}\end{array}\right.\)
3. Checking that they are orthogonal?

$$
\Rightarrow\left\{\begin{array}{c}
\left|\overrightarrow{U_{\rho}}\right|=\sqrt{\cos \theta^{2}+\sin \theta^{2}}=1 \\
\left|\overrightarrow{U_{\theta}}\right|=\sqrt{(-\sin \theta)^{2}+\cos \theta^{2}=1} \\
\left|\overrightarrow{U_{z}}\right|=|\vec{k}|=1
\end{array}\right.
$$

Hence $\overrightarrow{U_{\rho}}, \overrightarrow{U_{\theta}}$ et $\overrightarrow{U_{z}}$, are the unit vectos.
We have $\overrightarrow{U_{\rho}} \cdot \overrightarrow{U_{\theta}}=0, \overrightarrow{U_{\rho}} \cdot \overrightarrow{U_{z}}=0$ et $\overrightarrow{U_{z}} \cdot \overrightarrow{U_{\theta}}=0$
So $\overrightarrow{U_{\rho}}, \overrightarrow{U_{\theta}}$, et $\overrightarrow{U_{z}}$ are orthogonal vectors.

Therefore the vectors $\overrightarrow{U_{\rho}}, \overrightarrow{U_{\theta}}, \overrightarrow{U_{z}}$ form an orthonormal reference frame.
4. Write $\vec{A}=2 x \vec{\imath}+y \vec{\jmath}-2 z \vec{k}$ in cylindrical coordonates.

We have $\left\{\begin{array}{c}x=\rho \cos \theta \\ y=\rho \sin \theta \\ z=z_{M}\end{array}\right.$ et $\left\{\begin{array}{c}\vec{\imath}=\cos \theta \overrightarrow{u_{\rho}}-\sin \theta \overrightarrow{u_{\theta}} \\ \vec{\jmath}=\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \overrightarrow{u_{\theta}} \\ \vec{k}=\overrightarrow{u_{z}}\end{array}\right.$
So $\vec{A}=2 x \vec{\imath}+y \vec{\jmath}-2 z \vec{k}$ is wretten by:

$$
\begin{gathered}
\Rightarrow \vec{A}=2 \rho \cos \theta\left(\cos \theta \overrightarrow{u_{\rho}}-\sin \theta \overrightarrow{u_{\theta}}\right)+\rho \sin \theta\left(\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \overrightarrow{u_{\theta}}\right)-2 z \vec{k} \\
\Rightarrow \vec{A}=\left(2 \rho \cos \theta^{2}+\rho \sin \theta^{2}\right) \overrightarrow{u_{\rho}}+(-2 \rho \cos \theta \sin \theta+\rho \sin \theta \sin \theta) \overrightarrow{u_{\theta}}-2 z \vec{k} \\
\Rightarrow \overrightarrow{\boldsymbol{A}}=\left(\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}^{2}+\mathbf{1}\right) \boldsymbol{\rho} \overrightarrow{\boldsymbol{u}_{\boldsymbol{\rho}}}-\boldsymbol{\rho} \cos \boldsymbol{\theta} \sin \theta \overrightarrow{\boldsymbol{u}_{\boldsymbol{\theta}}}-\mathbf{2 z} \overrightarrow{\boldsymbol{u}_{\boldsymbol{z}}}
\end{gathered}
$$

