Abou Bekr Belkaid University of Tlemcen.

1st grade LMD (2023/2024).

Faculty of Sciences

M-MI, Exersices serie N°2.

Chapiter 2 : Complex Analysis

1. Write in the algebric form (a + ib) the complex number $\frac{1}{z}$ knowing that $z = \frac{1}{3} + i\frac{4}{5}$.

2. Show that : if $\lambda \in \mathbb{R}$, then $\left|\frac{1+\lambda i}{1-\lambda i}\right| = 1$.

3. Solve the equation (1+i)Z = 3+i.

4. Find all complex numbers $z \in \mathbb{C}^*$ such that $Z = (z+1)\frac{1}{z}$ is a real number.

- 5. Find all complex numbers $z \in \mathbb{C}$ such that $Z = (\overline{z} 2)(z i)$ is a purely imaginary number.
- 6. Find the modulus of the following complex numbers

$$\frac{1+i}{1-i}; \quad \frac{(2+3i)\left(1-5i\right)}{\left(4+i\sqrt{10}\right)\left(\sqrt{12}-i\right)}; \qquad a(\cos\theta+i\sin\theta), a \in \mathbb{R}^*; \quad 1+\cos\theta+i\sin\theta.$$

- (a) Find the square roots of the complex number (35 12i) under them algebric form.
 (b) Solve in C the equation : z² (10 + 3i)z + 14 + 18i = 0.
- 8. Solve in \mathbb{C} the equation : $z^2 + (2-2i)z + 3 6i = 0$.
- 9. Solve in \mathbb{C} the equations :(a) $z^2 = 15 + 8i$. (b) $z^2 = 24 + 70i$. (Additional).
- 10. Calculate the complex square roots of z = 1 i. Give the results in algebric and trigonometric forms. Deduce then that :

$$\cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{1+\sqrt{2}}{2\sqrt{2}}}$$
 and $\sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{1}{2\sqrt{2}\left(1+\sqrt{2}\right)}}$

11. Write the following complex numbers in the trigonometric or the exponential form :

$$z_{1} = 1 + i\sqrt{3}; \quad z_{2} = -1 + i \quad ; z_{3} = 1 + \cos\theta + i\sin\theta, \quad \theta \in [0, 2\pi[.$$

$$z_{4} = \frac{(1 - i\sqrt{3})^{2}}{(1 + i)^{3}}.$$

12. Simplify the following complex: $z = \frac{(1+i)^9}{(1-i)^7}$.

- 13. Expand $\cos(3\theta)$ and $\sin(3\theta)$ in a polynomial in terms of $\cos\theta$ and/or $\sin\theta$.
- 14. Linearize $\cos^2(\theta)$, $\sin^3(\theta)$, $\cos^4(\theta)$.
- 15. Solve in \mathbb{C} the equation : $z^3 = -1$.
- 16. Calculate the modulus and the argument of : $4\sqrt{2}(1-i)$. Deduce its exponential writting, and the solutions in \mathbb{C} of the equation : $z^3 = 4\sqrt{2}(1-i)$. Represent them on the complex plan.
- 17. Solve in \mathbb{C} the equation : $z^3 + i = 0$ then the equation $z^3 + i = i(z i)$.
- 18. Write the complex number (1 + i) in its exponential form, then find the value of the complex number :

$$z = (1+i)^{12} + (1-i)^{12}.$$