Abou Bekr Belkaid University of Tlemcen.

Faculty of Sciences

1st grade LMD (2023/2024).
M-MI, Exersices serie $\mathrm{N}^{\circ} 2$.

Chapiter 2: Complex Analysis

1. Write in the algebric form $(a+i b)$ the complex number $\frac{1}{z}$ knowing that $z=\frac{1}{3}+i \frac{4}{5}$.
2. Show that : if $\lambda \in \mathbb{R}$, then $\left|\frac{1+\lambda i}{1-\lambda i}\right|=1$.
3. Solve the equation $(1+i) Z=3+i$.
4. Find all complex numbers $z \in \mathbb{C}^{*}$ such that $Z=(z+1) \frac{1}{z}$ is a real number.
5. Find all complex numbers $z \in \mathbb{C}$ such that $Z=(\bar{z}-2)(z-i)$ is a purely imaginary number.
6. Find the modulus of the following complex numbers

$$
\frac{1+i}{1-i} ; \quad \frac{(2+3 i)(1-5 i)}{(4+i \sqrt{10})(\sqrt{12}-i)} ; \quad a(\cos \theta+i \sin \theta), a \in \mathbb{R}^{*} ; \quad 1+\cos \theta+i \sin \theta
$$

7. (a) Find the square roots of the complex number $(35-12 i)$ under them algebric form.
(b) Solve in \mathbb{C} the equation : $z^{2}-(10+3 i) z+14+18 i=0$.
8. Solve in \mathbb{C} the equation : $z^{2}+(2-2 i) z+3-6 i=0$.
9. Solve in \mathbb{C} the equations :(a) $z^{2}=15+8 i$. (b) $z^{2}=24+70 i$. (Additional).
10. Calculate the complex square roots of $z=1-i$. Give the results in algebric and trigonometric forms. Deduce then that :

$$
\cos \left(\frac{\pi}{8}\right)=\sqrt{\frac{1+\sqrt{2}}{2 \sqrt{2}}} \quad \text { and } \quad \sin \left(\frac{\pi}{8}\right)=\sqrt{\frac{1}{2 \sqrt{2}(1+\sqrt{2})}} .
$$

11. Write the following complex numbers in the trigonometric or the exponential form :

$$
\begin{aligned}
& z_{1}=1+i \sqrt{3} ; \quad z_{2}=-1+i \quad ; z_{3}=1+\cos \theta+i \sin \theta, \quad \theta \in[0,2 \pi[. \\
& z_{4}=\frac{(1-i \sqrt{3})^{2}}{(1+i)^{3}}
\end{aligned}
$$

12. Simplify the following complex: $z=\frac{(1+i)^{9}}{(1-i)^{7}}$.
13. Expand $\cos (3 \theta)$ and $\sin (3 \theta)$ in a polynomial in terms of $\cos \theta$ and $/$ or $\sin \theta$.
14. Linearize $\cos ^{2}(\theta), \sin ^{3}(\theta), \cos ^{4}(\theta)$.
15. Solve in \mathbb{C} the equation : $z^{3}=-1$.
16. Calculate the modulus and the argument of : $4 \sqrt{2}(1-i)$. Deduce its exponential writting, and the solutions in \mathbb{C} of the equation : $z^{3}=4 \sqrt{2}(1-i)$. Represent them on the complex plan.
17. Solve in \mathbb{C} the equation : $z^{3}+i=0$ then the equation $z^{3}+i=i(z-i)$.
18. Write the complex number $(1+i)$ in its exponential form, then find the value of the complex number :

$$
z=(1+i)^{12}+(1-i)^{12}
$$

