Abou Bekr Belkaid University - Tlemcen
Faculty of Sciences
Department of Mathematics

Academic year: 2023-2024
Module: Algebra 1
L1 Math+MI

Tutorial sheet $\mathbf{N}^{\circ} 2$: Sets and maps

Exercise 1

(1) Write the following sets in extension:
$A=\left\{n \in \mathbb{Z} \backslash \frac{\sqrt{2}}{2}<|n|<\sqrt{3} \pi\right\}$ and $B=\left\{x \in \mathbb{R} \backslash \exists(n, p) \in \mathbb{N}^{2}: x=\frac{n}{p}\right.$ and $\left.1 \leq 2 p \leq n \leq 4\right\}$.
(2) Write the following sets in comprehension:
$C=\left\{\frac{4}{5}, \frac{6}{7}, \frac{8}{9}, \frac{10}{11}, \frac{12}{13}, \frac{14}{15}\right\}$ and $D=\left\{-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \frac{1}{6},-\frac{1}{7}, \ldots\right\}$.

Exercise 2

(1) Let $E=\left\{x \in \mathbb{Z} \backslash\left|x-\frac{1}{2}\right|<1\right\}$ be a set. Determine $P(E)$ and $P(P(E))$.
(2) For $n \in \mathbb{N}^{*}$, let's pose $\left.\left.A_{n}=\right] \frac{1}{n+1}, \frac{1}{n}\right]$.
(i) Show that the family of sets $\left\{A_{n}, n \in \mathbb{N}^{*}\right\}$ is a recovery of the interval $\left.] 0,1\right]$.
(ii) Deduce that $\left\{A_{n}, n \in \mathbb{N}^{*}\right\}$ is a partition of $\left.] 0,1\right]$.

Exercise 3

Consider the two sets E and F defined by :
$E=\left\{(x, y) \in \mathbb{R}^{2} \backslash x^{2}-x y-2 y^{2}=0\right\}$ and $F=\left\{(x, y) \in \mathbb{R}^{2} \backslash x+y=0\right\}$.
(1) Show that $F \subset E$.
(2) Determine y of \mathbb{R} such that $:(1, y) \in E$. Do we have $E \subset F$?
(3) Show that : $E=F \cup G$ where G is a set to be determined.
(4) Let the sets be :
$A=\left\{(x, y) \in \mathbb{R}^{2} \backslash y=x+1+\sqrt{x^{2}+1}\right\}$ and $B=\left\{(x, y) \in \mathbb{R}^{2} \backslash y=x+1-\sqrt{x^{2}+1}\right\}$.
(i) Determine the set H such that: $H=A \cup B$.
(ii) Determine $H \cap F$.

Exercise 4

Let A, B, and C be three parts of a set E.
(1) Find a necessary condition so that: $A \cup B=A \cap C$
(2) Show that: $[A \cap B=A \cap C$ and $A \cup B=A \cup C] \Rightarrow B=C$
(3) Demonstrate that : $A \cap B=A \cup B \Rightarrow A=B$, using : (i) Direct proof. (ii) The contrapositive.
(4) $B \subset A \Rightarrow A \backslash B=C_{A}^{B}$

Exercise 5

Consider the two sets E and F defined by :
$E=\{n \in \mathbb{N} \backslash n$ is even and divides 24$\}$ and $F=\{n \in \mathbb{N} \backslash n$ is prime and $n<9\} \cup\{1,10\}$.
Let $f: E \rightarrow F$ be a map defined by its graph $G=\{(2,3),(4,5),(6,1),(8,5),(12,7)\}$.
(1) Check that f is indeed a map. (2) f is it one-to-one ? onto?
(3) Determine $f(6), f(\{6\}), f(\{n \in E \backslash n$ divides 8$\})$ and $f(E)$.
(4) Determine $f^{-1}(1), f^{-1}(\{1\}), f^{-1}(\{5\}), f^{-1}(\{n \in \mathbb{N} \backslash n$ is prime and $n<9\})$ and $f^{-1}(F)$.

Exercise 6

Let $f: E \rightarrow F$ be a map, $A \in P(E)$ and $B \in P(F)$.
(1) Show that : $A \subset f^{-1}(f(A))$ and $f\left(f^{-1}(B)\right) \subset B$.
(2) Show using counter examples that : $f^{-1}(f(A)) \nsubseteq A$ and $B \nsubseteq f\left(f^{-1}(B)\right)$.
(3) Find conditions on f so that: $A=f^{-1}(f(A))$ and $f\left(f^{-1}(B)\right)=B$.

Exercise 7

We notice $U=] 0,+\infty[\times] 0,+\infty[$. Let $f: U \rightarrow U$ be a map defined by :

$$
f(x, y)=\left(x y, \frac{y}{x}\right)
$$

(1) Show that f is one-to-one? (We can pose $t=\frac{y}{x}$).
(2) Is f onto? If yes, determine f^{-1}.

Exercice 8

Let $h: \mathbb{R}^{+} \rightarrow\left[\frac{1}{4},+\infty\left[\right.\right.$ be a map defined by : $\forall x \in \mathbb{R}^{+}, h(x)=x+\sqrt{x}+\frac{1}{4}$.
(1) Check that: $\forall x \in \mathbb{R}^{+}, h(x)=\left(\sqrt{x}+\frac{1}{2}\right)^{2}$.
(2) Write the application h as the composite of two maps f and $g: h=g \circ f$.
(3) Show that f is a bijection and determine its inverse map.
(4) Show that g is a bijection and determine its inverse map.
(5) Deduce that h is a bijection of \mathbb{R}^{+}in $\left[\frac{1}{4},+\infty[\right.$, and determine its inverse map.

Exercise 9 (SUPP)

(I) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by $: f(x)=\frac{1}{\sqrt{1+x^{2}}}$.
(1) Determine $f(\{x \in \mathbb{R} \backslash|x|=1\})$ and $f^{-1}\left(\left\{y \in \mathbb{R} \backslash y^{3}=8\right\}\right)$. (2) Is f one-to-one? onto? bijective?
(3) Determine $f([1, \sqrt{3}]), f(]-\sqrt{3},-1]), f\left(\left[-1,2 \sqrt{2}[), f\left(\mathbb{R}^{+}\right), f^{-1}(] 0,1\right]\right)$ and $f^{-1}\left(\left[\frac{1}{2}, 1\right]\right)$.
(II) Let $g=f_{\mathbb{R}^{+}}: \mathbb{R}^{+} \rightarrow J$ where $J=f\left(\mathbb{R}^{+}\right)$. $\left(g\right.$ is the restriction of f on $\left.\mathbb{R}^{+}\right)$.
(1) Show that g is bijective and determine g^{-1}. (2) Determine $g^{-1}\left(\frac{1}{2}\right)$ by two methods.
(3) Calculate $g \circ g^{-1}(y)$ for $y \in J$ and $g^{-1} \circ g(x)$ for $x \in \mathbb{R}^{+}$.

Exercice 10 (SUPP)

We notice $J=] 1,+\infty[$. Let f and $g: J \rightarrow J$ be two maps difined by :

$$
\forall x \in J, f(x)=1+\frac{2}{\sqrt{x}-1} \text { and } g(x)=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)^{2} .
$$

(1) Determine $f\left(\left[2,4[)\right.\right.$ and $g^{-1}(\{9\})$.
(2) Show that f is a bijection from J into J and determine its inverse map.
(3) Check that: $\forall x \in J, g(x)=(f(x))^{2}$.
(4) Deduce that g is a bijection of from J into J and determine its inveerse map.

SUPPLEMENTARY EXERCISES

Exercise 1

(1) Consider the following sets:
$A=\left\{\frac{5 n+8}{8 n-1}, n \in \mathbb{N}\right\}$ and $B=\left\{\frac{2 n+4}{2 n-1}, n \in \mathbb{N}\right\}$.
(i) Does $\frac{17}{3} \in A ? \frac{18}{15} \in A ? \frac{43}{25} \in B ? \frac{42}{37} \in B$?
(ii) Show that $\frac{6}{5}$ is a common element between sets A and B.
(2) Let $C=\left\{\frac{\pi}{4}+\frac{2 k \pi}{5}, k \in \mathbb{Z}\right\}$ and $D=\left\{\frac{\pi}{2}+\frac{2 k \pi}{5}, k \in \mathbb{Z}\right\}$, be two sets.

- Show that $A \cap B=\varnothing$.

Exercise 2

Let $A=]-\infty, 3], B=[-2,7[$ and $C=]-5,+\infty[$.
Determine : $A \cup B, B \cap C, C \backslash A, C_{\mathbb{R}}(B)$ and $A \triangle B$.

Exercise 3

Let $A=\left\{(x, y) \in \mathbb{R}^{2} \backslash x^{2}+y^{2} \leq 1\right\}$ be a set.
(1) Do the pairs $(1,0)$ and $(0,1)$ belong to A ?
(2) Show that A can not be the cartesian product of two parts of \mathbb{R}.

Indication : By contradiction and notice that $(1,1) \notin A$.

Exercise 4

Let A, B, and C be three parts of a set E. Show that:
(1) $(A \backslash B) \backslash C=A \backslash(B \cup C)$
(2) $C_{E}(A \cap B)=C_{E}(A) \cup C_{E}(B)$
(3) $A \triangle B=A \cap B \Leftrightarrow A=B=\varnothing$

Exercise 5

Consider the two parts of $\mathbb{R}^{2}, E=[0,1]$ and $F=[0,2]$
(1) Draw $E \times F$ and $E \times E$.
(2) Let $f: E \rightarrow F$ and $g: F \rightarrow E$ be two maps.

$$
x \mapsto 2-x \quad x \mapsto(x-1)^{2}
$$

(3) Specify $g \circ f$ and $f \circ g$. Do we have $g \circ f=f \circ g$ and $g \circ f=g$?
(4) Determine $f^{-1}(\{0\})$ and $g^{-1}(] 0, \frac{1}{2}[)$.
(5) Show that : $g \circ f$ is bijective and specify $(g \circ f)^{-1}$

Exercise 6

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a map defined by : $f(x)=\frac{2 x}{1+x^{2}}$.
(1) Determine $f(2)$ and $f\left(\frac{1}{2}\right) \cdot f$ is it injective (one-to-one)?
(2) Solve in $\mathbb{R}: f(x)=2 . f$ is it surjective (onto) ? Show that $f(\mathbb{R})=[-1,1]$.
(3) Show that the application g defined on $[-1,1]$ in $[-1,1]$ by: $f(x)=g(x)$ is bijective and determine its inverse g^{-1}.

Exercise 7

Show that the $\operatorname{map} f: \mathbb{R} \rightarrow]-1,1\left[\right.$ defined by $: f(x)=\frac{x}{1+|x|}$ is bijective and determine its inverse f^{-1}.

Exercise 8

Consider the following two sets :

$$
\begin{aligned}
A & =\{x \in \mathbb{R} \backslash \exists t \in[0,1]: x=t+2\} \text { and } \\
B & =\left\{x \in \mathbb{R} \backslash\left|x-\frac{5}{2}\right| \leq \frac{1}{2}\right\}
\end{aligned}
$$

(1) Write the set B as an interval $[a, b]$.
(2) Show that $A=B$.

Exercise 9

Let $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$be a map defined by :

$$
\forall x \in \mathbb{R}, f(x)=\frac{1}{1+\sqrt{4+x^{2}}}
$$

(1) Determine $f\left(\left\{x \in \mathbb{R} \backslash x^{2}=4\right\}\right), f\left(\mathbb{R}^{+}\right)$and $f^{-1}\left(\left\{y \in \mathbb{R}^{+} \backslash|y|=1\right\}\right)$.
(2) f is it one-to-one? onto? bijective?
(3) Let $g=f_{\mathbb{R}^{+}}: \mathbb{R}^{+} \rightarrow J$ where $J=f\left(\mathbb{R}^{+}\right)$, the restriction of f on \mathbb{R}^{+}.

- Show that g is bijective and determine g^{-1}.

Exercise 10

Let f and g be two maps defined by :

$$
\begin{aligned}
f: \mathbb{R} \backslash\{3\} & \rightarrow \mathbb{R} /\{4\} \text { and } g: \mathbb{R} /\{4\} \rightarrow \mathbb{R} \backslash\{3\} \\
x & \mapsto \frac{4 x+1}{x-3}
\end{aligned}
$$

(1) Show that $\forall y \in \mathbb{R} \backslash\{4\}, \frac{3 y+1}{y-4} \neq 3$.
(2) Determine for $x \in \mathbb{R} \backslash\{1,3\}$ the image of $3 x$ by f and for $x \in \mathbb{R} \backslash\{-2,2,4\}$ the image of x^{2} by g.
(3) Determine the preimages $y=1$ by f and by g.
(4) Determine $f \circ g$ and $g \circ f$.
(5) Show that f is injective (one-to-one).
(6) f is it surjective (onto)?
(7) f is it bijective? If yes, determine f^{-1}.

