Abou Bekr Belkaid University - Tlemcen Faculty of Sciences Department of Mathematics Academic year: 2023 - 2024 Module: Algebra 1 L1 Math+MI

Tutorial sheet ${\rm N}^{\circ}2\,$: Sets and maps

Exercise 1

(1) Write the following sets in extension:

$$A = \left\{ n \in \mathbb{Z} \setminus \frac{\sqrt{2}}{2} < |n| < \sqrt{3}\pi \right\} \text{ and } B = \left\{ x \in \mathbb{R} \setminus \exists (n,p) \in \mathbb{N}^2 : x = \frac{n}{p} \text{ and } 1 \le 2p \le n \le 4 \right\}.$$

(2) Write the following sets in comprehension:

$$C = \left\{\frac{4}{5}, \frac{6}{7}, \frac{8}{9}, \frac{10}{11}, \frac{12}{13}, \frac{14}{15}\right\} \text{ and } D = \left\{-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \frac{1}{6}, -\frac{1}{7}, \dots\right\}.$$

Exercise 2

(1) Let $E = \left\{ x \in \mathbb{Z} \setminus \left| x - \frac{1}{2} \right| < 1 \right\}$ be a set. Determine P(E) and P(P(E)). (2) For $n \in \mathbb{N}^*$, let's pose $A_n = \left] \frac{1}{n+1}, \frac{1}{n} \right]$. (*i*) Show that the family of sets $\left\{ A_n, n \in \mathbb{N}^* \right\}$ is a recovery of the interval]0, 1]. (*ii*) Deduce that $\left\{ A_n, n \in \mathbb{N}^* \right\}$ is a partition of]0, 1].

Exercise 3

Consider the two sets *E* and *F* defined by : $E = \{(x,y) \in \mathbb{R}^2 \setminus x^2 - xy - 2y^2 = 0\} \text{ and } F = \{(x,y) \in \mathbb{R}^2 \setminus x + y = 0\}.$ (1) Show that $F \subset E$. (2) Determine *y* of \mathbb{R} such that : $(1,y) \in E$. Do we have $E \subset F$? (3) Show that : $E = F \cup G$ where *G* is a set to be determined. (4) Let the sets be : $A = \{(x,y) \in \mathbb{R}^2 \setminus y = x + 1 + \sqrt{x^2 + 1}\} \text{ and } B = \{(x,y) \in \mathbb{R}^2 \setminus y = x + 1 - \sqrt{x^2 + 1}\}.$ (*i*) Determine the set *H* such that : $H = A \cup B$. (*ii*) Determine $H \cap F$.

Exercise 4

Let A, B, and C be three parts of a set E.

(1) Find a necessary condition so that : $A \cup B = A \cap C$

(2) Show that : $[A \cap B = A \cap C \text{ and } A \cup B = A \cup C] \Rightarrow B = C$

(3) Demonstrate that : $A \cap B = A \cup B \Rightarrow A = B$, using : (*i*) Direct proof. (*ii*) The contrapositive. (4) $B \subset A \Rightarrow A \setminus B = C_A^B$

Exercise 5

Consider the two sets E and F defined by :

 $E = \left\{ n \in \mathbb{N} \setminus n \text{ is even and divides } 24 \right\} \text{ and } F = \left\{ n \in \mathbb{N} \setminus n \text{ is prime and } n < 9 \right\} \cup \{1, 10\}.$

Let $f: E \to F$ be a map defined by its graph $G = \{(2,3), (4,5), (6,1), (8,5), (12,7)\}$.

(1) Check that f is indeed a map. (2) f is it one-to-one ? onto?

(3) Determine $f(6), f(\{6\}), f(\{n \in E \setminus n \text{ divides } 8\})$ and f(E).

(4) Determine $f^{-1}(1), f^{-1}(\{1\}), f^{-1}(\{5\}), f^{-1}(\{n \in \mathbb{N} \mid n \text{ is prime and } n < 9\})$ and $f^{-1}(F)$.

Exercise 6

- Let $f: E \to F$ be a map, $A \in P(E)$ and $B \in P(F)$.
- (1) Show that $A \subset f^{-1}(f(A))$ and $f(f^{-1}(B)) \subset B$.
- (2) Show using counter examples that $f^{-1}(f(A)) \not\subseteq A$ and $B \not\subseteq f(f^{-1}(B))$.
- (3) Find conditions on f so that : $A = f^{-1}(f(A))$ and $f(f^{-1}(B)) = B$.

Exercise 7

We notice $U = [0, +\infty[\times]0, +\infty[$. Let $f: U \rightarrow U$ be a map defined by :

$$f(x,y) = \left(xy,\frac{y}{x}\right)$$

- (1) Show that *f* is one-to-one? (We can pose $t = \frac{y}{x}$).
- (2) Is f onto? If yes, determine f^{-1} .

Exercice 8

Let
$$h : \mathbb{R}^+ \to \left[\frac{1}{4}, +\infty\right]$$
 be a map defined by $: \forall x \in \mathbb{R}^+, h(x) = x + \sqrt{x} + \frac{1}{4}$.
(1) Check that $: \forall x \in \mathbb{R}^+, h(x) = \left(\sqrt{x} + \frac{1}{2}\right)^2$.

(2) Write the application *h* as the composite of two maps *f* and *g* : $h = g \circ f$.

(3) Show that f is a bijection and determine its inverse map.

(4) Show that g is a bijection and determine its inverse map.

(5) Deduce that *h* is a bijection of \mathbb{R}^+ in $\left[\frac{1}{4}, +\infty\right]$, and determine its inverse map.

Exercise 9 (SUPP)

(*I*) Let
$$f : \mathbb{R} \to \mathbb{R}$$
 be a map defined by $: f(x) = \frac{1}{\sqrt{1+x^2}}$.
(1) Determine $f(\{x \in \mathbb{R} \mid |x| = 1\})$ and $f^{-1}(\{y \in \mathbb{R} \mid y^3 = 8\})$. (2)

- (1) Determine $f(x \in \mathbb{R} \mid |x| = 1)$ and $f^{-1}(\{y \in \mathbb{R} \mid y^3 = 8\})$. (2) Is f one-to-one? onto? bijective? (3) Determine $f([1,\sqrt{3}]), f(]-\sqrt{3}, -1]), f([-1,2\sqrt{2}[), f(\mathbb{R}^+), f^{-1}(]0, 1])$ and $f^{-1}([\frac{1}{2}, 1])$.
- (*II*) Let $g = f_{\mathbb{R}^+} : \mathbb{R}^+ \to J$ where $J = f(\mathbb{R}^+)$. $(g \text{ is the restriction of } f \text{ on } \mathbb{R}^+)$.

(1) Show that g is bijective and determine g^{-1} . (2) Determine $g^{-1}\left(\frac{1}{2}\right)$ by two methods.

(3) Calculate $g \circ g^{-1}(y)$ for $y \in J$ and $g^{-1} \circ g(x)$ for $x \in \mathbb{R}^+$.

Exercice 10 (SUPP)

We notice $J = [1, +\infty)$. Let f and $g : J \rightarrow J$ be two maps difined by :

$$\forall x \in J, f(x) = 1 + \frac{2}{\sqrt{x} - 1} \text{ and } g(x) = \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right)^2.$$

- (1) Determine $f([2,4[) \text{ and } g^{-1}(\{9\}))$.
- (2) Show that f is a bijection from J into J and determine its inverse map.
- (3) Check that : $\forall x \in J, g(x) = (f(x))^2$.

(4) Deduce that g is a bijection of from J into J and determine its inveerse map.

SUPPLEMENTARY EXERCISES

Exercise 1

(1) Consider the following sets:

$$A = \left\{ \frac{5n+8}{8n-1}, n \in \mathbb{N} \right\} \text{ and } B = \left\{ \frac{2n+4}{2n-1}, n \in \mathbb{N} \right\}.$$

(*i*) Does $\frac{17}{3} \in A$? $\frac{18}{15} \in A$? $\frac{43}{25} \in B$? $\frac{42}{37} \in B$?
(*ii*) Show that $\frac{6}{5}$ is a common element between sets A and B .
(2) Let $C = \left\{ \frac{\pi}{4} + \frac{2k\pi}{5}, k \in \mathbb{Z} \right\}$ and $D = \left\{ \frac{\pi}{2} + \frac{2k\pi}{5}, k \in \mathbb{Z} \right\}$, be two sets.
- Show that $A \cap B = \emptyset$.

Exercise 2

Let $A =]-\infty, 3]$, B = [-2, 7[and $C =]-5, +\infty[$. Determine : $A \cup B$, $B \cap C$, $C \lor A$, $C_{\mathbb{R}}(B)$ and $A \triangle B$.

Exercise 3

Let $A = \{(x, y) \in \mathbb{R}^2 \setminus x^2 + y^2 \le 1\}$ be a set.

(1) Do the pairs (1,0) and (0,1) belong to A?

(2) Show that A can not be the cartesian product of two parts of \mathbb{R} .

Indication : By contradiction and notice that $(1,1) \notin A$.

Exercise 4

Let A, B, and C be three parts of a set E. Show that :

- (1) $(A \setminus B) \setminus C = A \setminus (B \cup C)$ (2) $C_E(A \cap B) = C_E(A) \cup C_E(B)$
- $(2) \ \mathcal{C}_{E}(A + B) \ \mathcal{C}_{E}(A) \ \mathcal{C}$

Exercise 5

Consider the two parts of \mathbb{R}^2 , E = [0, 1] and F = [0, 2](1) Draw $E \times F$ and $E \times E$. (2) Let $f: E \to F$ and $g: F \to E$ be two maps. $x \mapsto 2 - x$ $x \mapsto (x - 1)^2$ (3) Specify $g \circ f$ and $f \circ g$. Do we have $g \circ f = f \circ g$ and $g \circ f = g$? (4) Determine $f^{-1}(\{0\})$ and $g^{-1}(\left[0, \frac{1}{2}\right[\right])$. (5) Show that : $g \circ f$ is bijective and specify $(g \circ f)^{-1}$

Exercise 6

Let $f: \mathbb{R} \to \mathbb{R}$ be a map defined by $: f(x) = \frac{2x}{1+x^2}$. (1) Determine f(2) and $f\left(\frac{1}{2}\right)$. f is it injective (one-to-one)? (2) Solve in \mathbb{R} : f(x) = 2. f is it surjective (onto)? Show that $f(\mathbb{R}) = [-1, 1]$.

(3) Show that the application g defined on [-1, 1] in [-1, 1] by: f(x) = g(x) is bijective and determine its inverse g^{-1} .

Exercise 7

Show that the map $f: \mathbb{R} \to]-1, 1[$ defined by : $f(x) = \frac{x}{1+|x|}$ is bijective and determine its inverse f^{-1} .

Exercise 8

Consider the following two sets :

$$A = \left\{ x \in \mathbb{R} \setminus \exists t \in [0, 1] : x = t + 2 \right\} \text{ and}$$
$$B = \left\{ x \in \mathbb{R} \setminus \left| x - \frac{5}{2} \right| \le \frac{1}{2} \right\}.$$

(1) Write the set *B* as an interval [a, b].

(2) Show that A = B.

Exercise 9

Let $f : \mathbb{R} \to \mathbb{R}^+$ be a map defined by :

$$\forall x \in \mathbb{R}, f(x) = \frac{1}{1 + \sqrt{4 + x^2}}.$$

(1) Determine $f(\{x \in \mathbb{R} \mid x^2 = 4\}), f(\mathbb{R}^+) \text{ and } f^{-1}(\{y \in \mathbb{R}^+ \mid y| = 1\}).$

(2)f is it one-to-one? onto? bijective?

(3) Let $g = f_{\mathbb{R}^+} : \mathbb{R}^+ \to J$ where $J = f(\mathbb{R}^+)$, the restriction of f on \mathbb{R}^+ .

- Show that g is bijective and determine g^{-1} .

Exercise 10

Let f and g be two maps defined by :

$$f: \mathbb{R} \setminus \{3\} \to \mathbb{R} / \{4\} \text{ and } g: \mathbb{R} / \{4\} \to \mathbb{R} \setminus \{3\}$$
$$x \mapsto \frac{4x+1}{x-3} \qquad x \mapsto \frac{3x+1}{x-4}$$

- (1) Show that $\forall y \in \mathbb{R} \setminus \{4\}, \frac{3y+1}{y-4} \neq 3$.
- (2) Determine for $x \in \mathbb{R} \setminus \{1, 3\}$ the image of 3x by f and for $x \in \mathbb{R} \setminus \{-2, 2, 4\}$ the image of x^2 by g.
- (3) Determine the preimages y = 1 by f and by g.
- (4) Determine $f \circ g$ and $g \circ f$.
- (5) Show that f is injective (one-to-one).

(6) f is it surjective (onto)?

(7) *f* is it bijective? If yes, determine f^{-1} .