1-5 Methods of proof

- Direct proof
- ② Disjunction of cases
- Ontraposition
- Contradiction
- Sy giving a counter example
- 6 Successive equivalences
- Induction.

- We want to show that the proposition $\ll P \Longrightarrow Q$ » is true.
- We assume that *P* is true and we show that then *Q* is true.
- This is the method you are most familiar with.

- Let *n* be a natural number. Show that : *n* is even $\implies n^2$ is even.
- *n* is even $\implies \exists k \in \mathbb{N}$ such that n = 2kWe have $n^2 = (2k)^2 = 2(2k^2) = 2l$ with $l = 2k^2 \in \mathbb{N}$.
- And consequently n^2 is even.

• Show that :
$$x, y \in \left[-1, 1\right] \Longrightarrow \frac{x+y}{1+xy} \in \left[-1, 1\right]$$

• Let $x, y \in |-1, 1|$. $\left(\frac{x+y}{1+xy}\right)^2 - 1 = \frac{(x+y)^2 - (1+xy)^2}{(1+xy)^2} = \frac{x^2 + y^2 - 1 - x^2y^2}{(1+xy)^2}$ $= \frac{x^2 - 1 + y^2(1-x^2)}{(1+xy)^2} = \frac{(x^2 - 1)(1-y^2)}{(1+xy)^2} < 0$ because $x, y \in \left]-1, 1\right[$, and $x^2 < 1, y^2 < 1$ then $\left(\frac{x+y}{1+xy}\right)^2 - 1 < 0 \Longrightarrow \left(\frac{x+y}{1+xy}\right)^2 < 1 \Longrightarrow \left|\frac{x+y}{1+xy}\right| < 1$ • Finally: $\left(\frac{x+y}{1+y}\right)^2 - 1 < 0 \Longrightarrow \frac{x+y}{1+y} \in \left[-1, 1\right]$.

- If we want to check a proposition P(x) for all x in a set E,
- we show the proposition for the x in a part A of E,
- 2 then for the x not belonging to A.
 - This is the method of disjunction of cases or case by case.

• Let $n \in \mathbb{N}$. Show that : n(n+1)(n+2) is even.

• First case : n is even
$$\exists k \in \mathbb{N}$$
 such that $n = 2k$
 $n(n+1)(n+2) = 2k(2k+1)(2k+2) = 2l$ with
 $l = k(2k+1)(2k+2) \in \mathbb{N}$
therefore $n(n+1)(n+2)$ is even.

• <u>Second case : n is odd</u> $\exists k \in \mathbb{N}$ such that n = 2k + 1 n(n+1)(n+2) = (2k+1)(2k+2)(2k+3) = 2(2k+1)(k+1)(2k+3)= 2l with $l = (2k+1)(k+1)(2k+3) \in \mathbb{N}$.

so, n(n+1)(n+2) is even.

• Conclusion : $\forall n \in \mathbb{N}$, n(n+1)(n+2) is even.

۲

٥

• Show that :

$$orall x \in \mathbb{R}$$
, $|x-2| \leq x^2 - 3x + 3$

If
$$x \ge 2$$
, $|x-2| = x - 2 \le x^2 - 3x + 3$

then $x^2-4x+5\geq 0$ it's true because $\bigtriangleup=-4<0$

If
$$x < 2$$
, $|x - 2| = 2 - x \le x^2 - 3x + 3$

then
$$x^2-2x+1=\left(x-1
ight)^2\geq 0$$
 it is true.

• Conclusion :

$$\forall x \in \mathbb{R}, |x-2| \le x^2 - 3x + 3$$

E

₹ Ξ > < Ξ >

• Proof by contraposition is based on the following equivalence

$$(P \Longrightarrow Q) \iff (\overline{Q} \Longrightarrow \overline{P})$$

- So, if we want to show the proposition $P \Longrightarrow Q$
- we actually show that if \overline{Q} is true then \overline{P} is true.

- Let $n \in \mathbb{N}$ Show that : n^2 is even $\implies n$ is even.
- Assume that n is odd , and show that n^2 is odd
- $n ext{ is odd } \Longrightarrow \exists \ k \in \mathbb{N} ext{ shuch that } n = 2k + 1$ We have

$$n^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1 = 2l + 1$$

with $l = 2k^2 + 2k \in \mathbb{N}$. And consequently n^2 is odd

• Conclusion : n^2 is even $\implies n$ is even.

• Let $x, y \in \mathbb{R}$. Show that :

$$x \neq y \text{ and } xy \neq 1 \Longrightarrow rac{x}{x^2 + x + 1} \neq rac{y}{y^2 + y + 1}$$

æ

イロト イ団ト イヨト イヨト

•
$$\frac{x}{x^2 + x + 1} = \frac{y}{y^2 + y + 1} \Longrightarrow x (y^2 + y + 1) = y (x^2 + x + 1)$$
$$\implies xy^2 + xy + x = yx^2 + yx + y$$
$$\implies xy^2 + x - yx^2 - y = 0$$
$$\implies xy (y - x) + x - y = 0$$
$$\implies (x - y) (1 - xy) = 0$$
$$\implies x - y = 0 \text{ or } 1 - xy = 0$$
$$\implies x = y \text{ or } xy = 1$$

• Finally : $x \neq y$ and $xy \neq 1 \Longrightarrow \frac{x}{x^2 + x + 1} \neq \frac{y}{y^2 + y + 1}$

æ

▲口> ▲圖> ▲国> ▲国>

()

- Let *R* be a proposition. We know that $R \vee \overline{R}$ is true.
- To show that *R* is true, we assume that *R* is false, that is to say *R* is true and we show that we obtain a contradiction.
- If R is an implication, $R \cong P \Longrightarrow Q$ We have $\overline{P \Longrightarrow Q} \iff P \land \overline{Q}$
- Proof by contradiction to show that P ⇒ Q is based on the following principle :*
 we assume both that P is true and that Q is false and we look for a contradiction.
- So if P is true then Q must be true and therefore $P \Longrightarrow Q$ is true.

- Let show by contradiction that $\sqrt{2}$ is irrational (not rational).
- We assume that $\sqrt{2} \in \mathbb{Q}$. $\sqrt{2} \in \mathbb{Q} \Longrightarrow \sqrt{2} = rac{a}{b}$ with a and b are natural numbers that are prime to each other. $\left(\text{the fraction}\frac{a}{b}\text{ is irreducible}\right)$ $\implies 2 = \frac{a^2}{\mu^2} \implies a^2 = 2b^2 \implies a^2 \text{ is even} \implies a \text{ is even}$ so a = 2k with $k \in \mathbb{N}$ hence $a^2 = 2b^2 \Longrightarrow (2k)^2 = 2b^2 \Longrightarrow b^2 = 2k^2$ $\implies b^2$ is even $\implies b$ is even a and b are both even, which contradicts the hypothesis (a and b are prime to each other).
- Conclusion $:\sqrt{2}$ is irrational.

副下 《唐下 《唐下

Let a, b > 0.
 Show that :

$$\frac{a}{1+b} = \frac{b}{1+a} \implies a = b$$

2

イロト イ団ト イヨト イヨト

• Assume that
$$\frac{a}{1+b} = \frac{b}{1+a}$$
 with $a \neq b$
 $\frac{a}{1+b} = \frac{b}{1+a} \Longrightarrow a(1+b) = b(1+a)$
 $\implies a+a^2 = b+b^2 \Longrightarrow a-b+a^2-b^2 = 0$
 $\implies (a-b)+(a-b)(a+b) = 0$
 $\implies (a-b)(1+a+b) = 0$
and as $a \neq b$, then $1+a+b = 0$

• This is a contradiction, because a, b > 0.

• Conclusion :
$$\frac{a}{1+b} = \frac{b}{1+a} \implies a = b$$

æ

- ▲ 문 ► ▲ 문 ►

Image: Image:

- If we want to show that a proposition of the form ∀x ∈ E, P(x) is true, then for each x ∈ E, it is necessary to show that P(x) is true.
- On the other hand, to show that this proposition is false, then it suffices to find x ∈ E such that P(x) is false.
- Remember the negation of $\overline{\forall x \in E, P(x)}$ is $\exists x \in E, \overline{P(x)}$
- Finding such an $x \in E$ is finding a counter-example to the proposition $\forall x \in E, P(x)$.

- Show that the following proposition is false : Any positive integer is the sum of three squares.
- $\forall n \in \mathbb{N}, \exists a, b \text{ and } c \in \mathbb{N}$, $n = a^2 + b^2 + c^2$ is false.
- The squares are 0^2 , 1^2 , 2^2 , 3^2 , 4^2 , ...
- A counter example is 7.Squares less than 7 are 0, 1 and 4.But with three of these numbers, we cannot have 7.

- Show that the following proposition is false : $\forall x, y \in \mathbb{R}, \sqrt{x^2 + y^2} = x + y.$
- $\exists x = -1 \text{ and } y = 1 \text{ such that } \sqrt{(-1)^2 + 1^2} = \sqrt{2} \text{ and } x + y = 0.$

- If the following equivalences are true: $P \iff Q_1, Q_1 \iff Q_2, Q_2 \iff Q_3, ..., Q_n \iff Q$
- We also have the true equivalence: $P \Longleftrightarrow Q$
- We then write to simplify the writing : $P \iff Q_1 \iff Q_1 \iff Q_2 \iff Q_2 \iff Q_3...Q_n \iff Q$

• Let
$$x, y \in \mathbb{R}$$
. Show that
 $\left(\sqrt{x^2+1} + \sqrt{y^2+1} = 2\right) \iff (x = y = 0)$
• $\sqrt{x^2+1} + \sqrt{y^2+1} = 2 \iff \sqrt{x^2+1} - 1 + \sqrt{y^2+1} - 1 = 0$
• As $x^2 \ge 0$ and $y^2 \ge 0$, then $x^2 + 1 \ge 1$ and $y^2 + 1 \ge 1$
and consequently $\sqrt{x^2+1} - 1 \ge 0$ and $\sqrt{y^2+1} - 1 \ge 0$
 $\sqrt{x^2+1} + \sqrt{y^2+1} = 2 \iff \sqrt{x^2+1} - 1 + \sqrt{y^2+1} - 1 = 0$
 $\iff \sqrt{x^2+1} - 1 = 0$ and $\sqrt{y^2+1} - 1 = 0$
 $\iff \sqrt{x^2+1} - 1 = 0$ and $\sqrt{y^2+1} - 1 = 0$
 $\iff x^2 = 0$ and $y^2 = 0$
 $\iff x = 0$ and $y = 0$
• Conclusion : $\left(\sqrt{x^2+1} + \sqrt{y^2+1} = 2\right) \iff (x = y = 0)$

- The principle of mathematical induction method allows us to show that a proposition P(n), depending on $n \in \mathbb{N}$, is true $\forall n \in \mathbb{N}$ or $\forall n \ge n_0 \ (n_0 \ge 1)$
- The proof by induction takes place in three steps :
- 1 st step : (Initialization) we verify that $P(n_0)$ is true.
- 2 *nd step* : (*heredity*) induction hypothesis, we assume that P(n) is btrue for $n \ge n_0$ and we then prouve that the proposition P(n+1) at the next rank is true. $(P(n) \Longrightarrow P(n+1))$.
- 3 *rd* step: (*Conclusion*) Finally in the conclusion, we recall that by the principle of induction $\forall n \ge n_0$, P(n) is true.

- Show that $\forall n \in \mathbb{N}$: $7^{2n} 1$ is divisible by 12. $(12/7^{2n} 1)$.
- Let us note by P(n): $7^{2n} 1$ is divisible by 12.
- Let us show by induction that $\forall n \in \mathbb{N}, P(n)$ is true.
- 1 st step : (Initialization) For n = 0, we have $7^{2.0} 1 = 1 1 = 0$ as 0 is a multiple of 12 (0 = 12.0), then P(0) is true.

- 2 nd step: (heredity) we assume that P(n) is true for $n \ge 0$ and we show that P(n+1) is true. That is, we assume that $7^{2n} - 1$ is divisible by 12 $(7^{2n} - 1 = 12.k \text{ with } k \in \mathbb{N})$ and we show that $7^{2(n+1)} - 1$ is divisible by 12 $(7^{2(n+1)} - 1 = 12.I \text{ with } I \in \mathbb{N})$ We have $12/7^{2n} - 1 \Longrightarrow \exists k \in \mathbb{N} : 7^{2n} - 1 = 12.k \Longrightarrow 7^{2n} = 12.k + 1.$ $7^{2(n+1)} - 1 = 7^{2n+2} - 1 = 7^2 7^{2n} - 1$ = 49.(12.k + 1) - 1= 49.12.k + 49 - 1 = 49.12.k + 48= 49.12.k + 12.4 = 12.(49k + 4)= 12/ with $l = 49k + 4 \in \mathbb{N}$. Which proves that $7^{2(n+1)} - 1$ is divisible by 12.
- So P(n+1) is true.

通 と く ヨ と く ヨ と

- 3 *rd step*: (*Conclusion*) By the principle of induction, we deduce that P(n) is true $\forall n \in \mathbb{N}$, that is to say, $\forall n \in \mathbb{N}$: $7^{2n} 1$ is divisible by 12.
- Remark :

•
$$7^{2n} - 1 = 12.k \implies 7^{2n} = 1 + 12.k$$

 $\implies 7^2.7^{2n} = 7^2.(1 + 12.k) = 7^2 + 7^2.12.k$
 $\implies 7^{2n+2} - 1 = 7^2 + 7^2.12.k - 1$
 $\implies 7^{2n+2} - 1 = 48 + 7^2.12.k = 12.(4 + 49.k) = 12.1.$

- A I I I A I I I I

Show by induction that

$$\forall n \in \mathbb{N}^*, \ S_n = \sum_{k=1}^n k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

- 1 st step : (Initialization) for n = 1,we have $S_1 = \sum_{k=1}^1 k = 1 = \frac{1.(1+1)}{2} = 1$ So the property is true for n = 1
- 2 nd step : (heredity) suppose that $S_n = \frac{n(n+1)}{2}$ and show that $S_{n+1} = \frac{(n+1)(n+2)}{2}$

御 と く ヨ と く ヨ と …

• We have
$$S_{n+1} = \sum_{k=1}^{n+1} k = \underbrace{1+2+3+\ldots+n}_{S_n} + (n+1)$$

therefore $S_{n+1} = S_n + (n+1) = \frac{n(n+1)}{2} + (n+1)$
(induction hypothesis)
 $= \frac{n(n+1)+2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$
so $S_{n+1} = \frac{(n+1)(n+2)}{2}$

That is to say that the property is true for n+1

• 3 *rd step* : (*Conclusion*) By the principle of induction, we deduce that $\forall n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n k = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$

Sum and product symbols

•
$$\sum \text{ sum} : \underbrace{a_1 + a_2 + a_3 + ... + a_n}_{n \text{ terms}} = \sum_{k=1}^n a_k = \sum_{i=1}^n a_i = \sum_{j=1}^n a_j$$

• $\underbrace{a_0 + a_1 + a_2 + a_3 + ... + a_n}_{(n+1) \text{ termes}} = \sum_{k=0}^n a_k$
• If $\forall k = 1, 2, ...n$, we have $a_k = a$ then
 $\sum_{k=1}^n a = \underbrace{a + a + a + ... + a}_{n \text{ terms}} = n.a$
• If $a = 1$ then $\sum_{k=1}^n 1 = n$ and
 $\sum_{k=0}^n 1 = \underbrace{1 + 1 + ... + 1}_{(n+1) \text{ terms}} = (n+1) \cdot 1 = n+1$
 $(n+1) \text{ terms}$
• $\sum_{k=1}^n (a_k + b_k) = \sum_{k=1}^n a_k + \sum_{k=1}^n b_k, \sum_{k=1}^n \lambda a_k = \lambda \sum_{k=1}^n a_k, \text{where } \lambda \in \mathbb{R}.$

Sum and product symbols

•
$$\prod_{k=1}^{n} \text{ product} : \underbrace{a_{1}.a_{2}.a_{3}...a_{n}}_{n \text{ terms}} = \prod_{k=1}^{n} a_{k} = \underbrace{a_{0}.a_{1}.a_{2}.a_{3}...a_{n}}_{k=0} = \sum_{k=0}^{n} a_{k}$$

• If $\forall k = 1, 2, ...n$, we have $a_{k} = a$ then $\prod_{k=1}^{n} a = \underbrace{a.a.a..a}_{n} = a^{n}$
• $\prod_{k=1}^{n} 1 = \underbrace{1.1.1...1}_{k=1} = 1^{n} = 1 = n$ and
 $n \text{ terms}$
• $\prod_{k=0}^{n} 1 = \underbrace{1.1.1...1}_{k=1} = 1^{n+1} = 1, \prod_{k=1}^{n} k = 1.2.3...n = n! \text{ (factorial n)}.$
($n+1$) termes
• $\prod_{k=1}^{n} (a_{k}.b_{k}) = \left(\prod_{k=1}^{n} a_{k}\right) \cdot \left(\prod_{k=1}^{n} b_{k}\right), \prod_{k=0}^{n} \lambda a_{k} = \lambda^{n} \prod_{k=1}^{n} a_{k}, \text{ where}$
 $\lambda \in \mathbb{R}.$