1-5 Methods of proof

Contents

(1) Direct proof
(2) Disjunction of cases
(3) Contraposition
(9) Contradiction
(0) By giving a counter example
(6) Successive equivalences
(- Induction.

Direct proof

- We want to show that the proposition «P $\Longrightarrow Q »$ is true.
- We assume that P is true and we show that then Q is true.
- This is the method you are most familiar with.

Example 1

- Let n be a natural number. Show that : n is even $\Longrightarrow n^{2}$ is even.
- n is even $\Longrightarrow \exists k \in \mathbb{N}$ such that $n=2 k$

We have $n^{2}=(2 k)^{2}=2\left(2 k^{2}\right)=2 I$ with $I=2 k^{2} \in \mathbb{N}$.

- And consequently n^{2} is even.

Example 2

- Show that : $x, y \in]-1,1\left[\Longrightarrow \frac{x+y}{1+x y} \in\right]-1,1[$.
- Let $x, y \in]-1,1[$.

$$
\begin{aligned}
\left(\frac{x+y}{1+x y}\right)^{2} & -1=\frac{(x+y)^{2}-(1+x y)^{2}}{(1+x y)^{2}}=\frac{x^{2}+y^{2}-1-x^{2} y^{2}}{(1+x y)^{2}} \\
& =\frac{x^{2}-1+y^{2}\left(1-x^{2}\right)}{(1+x y)^{2}}=\frac{\left(x^{2}-1\right)\left(1-y^{2}\right)}{(1+x y)^{2}}<0
\end{aligned}
$$

because $x, y \in]-1,1\left[\right.$, and $x^{2}<1, y^{2}<1$ then

$$
\left(\frac{x+y}{1+x y}\right)^{2}-1<0 \Longrightarrow\left(\frac{x+y}{1+x y}\right)^{2}<1 \Longrightarrow\left|\frac{x+y}{1+x y}\right|<1
$$

- Finally : $\left.\left(\frac{x+y}{1+x y}\right)^{2}-1<0 \Longrightarrow \frac{x+y}{1+x y} \in\right]-1,1[$.

Disjunction of cases

- If we want to check a proposition $P(x)$ for all x in a set E,
(1) we show the proposition for the x in a part A of E,
(2) then for the x not belonging to A.
- This is the method of disjunction of cases or case by case.

Example 1

- Let $n \in \mathbb{N}$. Show that : $n(n+1)(n+2)$ is even.
- First case : n is even $\exists k \in \mathbb{N}$ such that $n=2 k$ $n(n+1)(n+2)=2 k(2 k+1)(2 k+2)=2 /$ with $I=k(2 k+1)(2 k+2) \in \mathbb{N}$ therefore $n(n+1)(n+2)$ is even.
- Second case : n is odd $\exists k \in \mathbb{N}$ such that $n=2 k+1$

$$
\begin{aligned}
n(n+1)(n+2)= & (2 k+1)(2 k+2)(2 k+3) \\
& =2(2 k+1)(k+1)(2 k+3) \\
& =2 / \text { with } l=(2 k+1)(k+1)(2 k+3) \in \mathbb{N} .
\end{aligned}
$$

so, $n(n+1)(n+2)$ is even.

- Conclusion : $\forall n \in \mathbb{N}, n(n+1)(n+2)$ is even.

Example 2

- Show that:

$$
\begin{gathered}
\forall x \in \mathbb{R},|x-2| \leq x^{2}-3 x+3 \\
\text { If } x \geq 2,|x-2|=x-2 \leq x^{2}-3 x+3
\end{gathered}
$$

then $x^{2}-4 x+5 \geq 0$ it's true because $\triangle=-4<0$

$$
\text { If } x<2,|x-2|=2-x \leq x^{2}-3 x+3
$$

then $x^{2}-2 x+1=(x-1)^{2} \geq 0$ it is true.

- Conclusion :

$$
\forall x \in \mathbb{R},|x-2| \leq x^{2}-3 x+3
$$

Contraposition

- Proof by contraposition is based on the following equivalence

$$
(P \Longrightarrow Q) \Longleftrightarrow(\bar{Q} \Longrightarrow \bar{P})
$$

- So, if we want to show the proposition $P \Longrightarrow Q$
- we actually show that if \bar{Q} is true then \bar{P} is true.

Example 1

- Let $n \in \mathbb{N}$

Show that: n^{2} is even $\Longrightarrow n$ is even.

- Assume that n is odd, and show that n^{2} is odd
- n is odd $\Longrightarrow \exists k \in \mathbb{N}$ shuch that $n=2 k+1$

We have

$$
n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1=2 \prime+1
$$

with $I=2 k^{2}+2 k \in \mathbb{N}$.
And consequently n^{2} is odd

- Conclusion : n^{2} is even $\Longrightarrow n$ is even.

Example 2

- Let $x, y \in \mathbb{R}$. Show that:

$$
x \neq y \text { and } x y \neq 1 \Longrightarrow \frac{x}{x^{2}+x+1} \neq \frac{y}{y^{2}+y+1}
$$

Example 2

$$
\begin{aligned}
\frac{x}{x^{2}+x+1}=\frac{y}{y^{2}+y+1} & \Longrightarrow x\left(y^{2}+y+1\right)=y\left(x^{2}+x+1\right) \\
& \Longrightarrow x y^{2}+x y+x=y x^{2}+y x+y \\
& \Longrightarrow x y^{2}+x-y x^{2}-y=0 \\
& \Longrightarrow x y(y-x)+x-y=0 \\
& \Longrightarrow(x-y)(1-x y)=0 \\
& \Longrightarrow x-y=0 \text { or } 1-x y=0 \\
& \Longrightarrow x=y \text { or } x y=1
\end{aligned}
$$

- Finally : $x \neq y$ and $x y \neq 1 \Longrightarrow \frac{x}{x^{2}+x+1} \neq \frac{y}{y^{2}+y+1}$

Contradiction

- Let R be a proposition. We know that $R \vee \bar{R}$ is true.
- To show that R is true, we assume that R is false, that is to say \bar{R} is true and we show that we obtain a contradiction.
- If R is an implication, $R \cong P \Longrightarrow Q$

We have $\overline{P \Longrightarrow Q} \Longleftrightarrow P \wedge \bar{Q}$

- Proof by contradiction to show that $P \Longrightarrow Q$ is based on the following principle :*
we assume both that P is true and that Q is false and we look for a contradiction.
- So if P is true then Q must be true and therefore $P \Longrightarrow Q$ is true.

Example 1

- Let show by contradiction that $\sqrt{2}$ is irrational (not rational).
- We assume that $\sqrt{2} \in \mathbb{Q}$.
$\sqrt{2} \in \mathbb{Q} \Longrightarrow \sqrt{2}=\frac{a}{b}$ with a and b are natural numbers that are prime to each other. (the fraction $\frac{a}{b}$ is irreducible)

$$
\Longrightarrow 2=\frac{a^{2}}{b^{2}} \Longrightarrow a^{2}=2 b^{2} \Longrightarrow a^{2} \text { is even } \Longrightarrow a \text { is even }
$$

so $a=2 k$ with $k \in \mathbb{N}$
hence $a^{2}=2 b^{2} \Longrightarrow(2 k)^{2}=2 b^{2} \Longrightarrow b^{2}=2 k^{2}$
$\Longrightarrow b^{2}$ is even $\Longrightarrow b$ is even
a and b are both even, which contradicts the hypothesis
(a and b are prime to each other).

- Conclusion : $\sqrt{2}$ is irrational.

Example 2

- Let $a, b>0$.

Show that:

$$
\frac{a}{1+b}=\frac{b}{1+a} \Longrightarrow a=b
$$

Example 2

- Assume that $\frac{a}{1+b}=\frac{b}{1+a}$ with $a \neq b$

$$
\begin{aligned}
\frac{a}{1+b}=\frac{b}{1+a} & \Longrightarrow a(1+b)=b(1+a) \\
& \Longrightarrow a+a^{2}=b+b^{2} \Longrightarrow a-b+a^{2}-b^{2}=0 \\
& \Longrightarrow(a-b)+(a-b)(a+b)=0 \\
& \Longrightarrow(a-b)(1+a+b)=0
\end{aligned}
$$

and as $a \neq b$, then $1+a+b=0$

- This is a contradiction, because $a, b>0$.
- Conclusion : $\frac{a}{1+b}=\frac{b}{1+a} \Longrightarrow a=b$

By giving a counter example

- If we want to show that a proposition of the form $\forall x \in E, P(x)$ is true, then for each $x \in E$, it is necessary to show that $P(x)$ is true.
- On the other hand, to show that this proposition is false, then it suffices to find $x \in E$ such that $P(x)$ is false.
- Remember the negation of $\overline{\forall x \in E, P(x)}$ is $\exists x \in E, \overline{P(x)}$
- Finding such an $x \in E$ is finding a counter-example to the proposition $\forall x \in E, P(x)$.

Example 1

- Show that the following proposition is false:

Any positive integer is the sum of three squares.

- $\forall n \in \mathbb{N}, \exists a, b$ and $c \in \mathbb{N}, n=a^{2}+b^{2}+c^{2}$ is false.
- The squares are $0^{2}, 1^{2}, 2^{2}, 3^{2}, 4^{2}, \ldots$
- A counter example is 7 .Squares less than 7 are 0,1 and 4 . But with three of these numbers, we cannot have 7 .

Example 2

- Show that the following proposition is false:

$$
\forall x, y \in \mathbb{R}, \sqrt{x^{2}+y^{2}}=x+y
$$

- $\exists x=-1$ and $y=1$ such that $\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$ and $x+y=0$.

Successive equivalences

- If the following equivalences are true:

$$
P \Longleftrightarrow Q_{1}, Q_{1} \Longleftrightarrow Q_{2}, Q_{2} \Longleftrightarrow Q_{3}, \ldots Q_{n} \Longleftrightarrow Q
$$

- We also have the true equivalence: $P \Longleftrightarrow Q$
- We then write to simplify the writing :
$P \Longleftrightarrow Q_{1} \Longleftrightarrow Q_{1} \Longleftrightarrow Q_{2} \Longleftrightarrow Q_{2} \Longleftrightarrow Q_{3} \ldots Q_{n} \Longleftrightarrow Q$

Example

- Let $x, y \in \mathbb{R}$. Show that
$\left(\sqrt{x^{2}+1}+\sqrt{y^{2}+1}=2\right) \Longleftrightarrow(x=y=0)$
- $\sqrt{x^{2}+1}+\sqrt{y^{2}+1}=2 \Longleftrightarrow \sqrt{x^{2}+1}-1+\sqrt{y^{2}+1}-1=0$
- As $x^{2} \geq 0$ and $y^{2} \geq 0$, then $x^{2}+1 \geq 1$ and $y^{2}+1 \geq 1$ and consequently $\sqrt{x^{2}+1}-1 \geq 0$ and $\sqrt{y^{2}+1}-1 \geq 0$ $\sqrt{x^{2}+1}+\sqrt{y^{2}+1}=2 \Longleftrightarrow \sqrt{x^{2}+1}-1+\sqrt{y^{2}+1}-1=0$

$$
\begin{aligned}
& \Longleftrightarrow \sqrt{x^{2}+1}-1=0 \text { and } \sqrt{y^{2}+1}-1=0 \\
& \Longleftrightarrow \sqrt{x^{2}+1}=1 \text { and } \sqrt{y^{2}+1}=1 \\
& \Longleftrightarrow x^{2}=0 \text { and } y^{2}=0 \\
& \Longleftrightarrow x=0 \text { and } y=0
\end{aligned}
$$

- Conclusion : $\left(\sqrt{x^{2}+1}+\sqrt{y^{2}+1}=2\right) \Longleftrightarrow(x=y=0)$

Induction

- The principle of mathematical induction method allows us to show that a proposition $P(n)$, depending on $n \in \mathbb{N}$, is true $\forall n \in \mathbb{N}$ or $\forall n \geq n_{0}\left(n_{0} \geq 1\right)$
- The proof by induction takes place in three steps:
- 1 st step : (Initialization) we verify that $P\left(n_{0}\right)$ is true.
- 2 nd step : (heredity) induction hypothesis, we assume that $P(n)$ is btrue for $n \geq n_{0}$ and we then prouve that the proposition $P(n+1)$ at the next rank is true. $(P(n) \Longrightarrow P(n+1))$.
- 3 rd step: (Conclusion) Finally in the conclusion, we recall that by the principle of induction $\forall n \geq n_{0}, P(n)$ is true.

Example 1

- Show that $\forall n \in \mathbb{N}: 7^{2 n}-1$ is divisible by 12 . $\left(12 / 7^{2 n}-1\right)$.
- Let us note by $P(n): 7^{2 n}-1$ is divisible by 12 .
- Let us show by induction that $\forall n \in \mathbb{N}, P(n)$ is true.
- 1 st step : (Initialization) For $n=0$, we have $7^{2.0}-1=1-1=0$ as 0 is a multiple of $12(0=12.0)$, then $P(0)$ is true.

Example 1

- 2 nd step: (heredity) we assume that $P(n)$ is true for $n \geq 0$ and we show that $P(n+1)$ is true.
That is, we assume that $7^{2 n}-1$ is divisible by 12
$\left(7^{2 n}-1=12 . k\right.$ with $\left.k \in \mathbb{N}\right)$
and we show that $7^{2(n+1)}-1$ is divisible by 12
$\left(7^{2(n+1)}-1=12 . /\right.$ with $\left.I \in \mathbb{N}\right)$
- We have

$$
\begin{aligned}
12 / 7^{2 n}-1 & \Longrightarrow \exists k \in \mathbb{N}: 7^{2 n}-1=12 \cdot k \Longrightarrow 7^{2 n}=12 \cdot k+1 . \\
7^{2(n+1)}-1 & =7^{2 n+2}-1=7^{2} \cdot 7^{2 n}-1 \\
& =49 \cdot(12 \cdot k+1)-1 \\
& =49 \cdot 12 \cdot k+49-1=49.12 \cdot k+48 \\
& =49 \cdot 12 \cdot k+12 \cdot 4=12 .(49 k+4) \\
& =12 l \text { with } l=49 k+4 \in \mathbb{N} .
\end{aligned}
$$

Which proves that $7^{2(n+1)}-1$ is divisible by 12 .

- So $P(n+1)$ is true.

Example 1

- 3 rd step: (Conclusion) By the principle of induction, we deduce that $P(n)$ is true $\forall n \in \mathbb{N}$, that is to say, $\forall n \in \mathbb{N}$:
$7^{2 n}-1$ is divisible by 12 .
- Remark:
- $7^{2 n}-1=12 . k \Longrightarrow 7^{2 n}=1+12 . k$

$$
\begin{aligned}
& \Longrightarrow 7^{2} \cdot 7^{2 n}=7^{2} \cdot(1+12 \cdot k)=7^{2}+7^{2} \cdot 12 \cdot k \\
& \Longrightarrow 7^{2 n+2}-1=7^{2}+7^{2} \cdot 12 \cdot k-1 \\
& \Longrightarrow 7^{2 n+2}-1=48+7^{2} \cdot 12 \cdot k=12 \cdot(4+49 \cdot k)=12 \cdot l .
\end{aligned}
$$

Example 2

- Show by induction that

$$
\forall n \in \mathbb{N}^{*}, S_{n}=\sum_{k=1}^{n} k=1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

- 1 st step : (Initialization) for $n=1$, we have

$$
S_{1}=\sum_{k=1}^{1} k=1=\frac{1 \cdot(1+1)}{2}=1
$$

So the property is true for $n=1$

- 2 nd step : (heredity) suppose that $S_{n}=\frac{n(n+1)}{2}$
and show that $S_{n+1}=\frac{(n+1)(n+2)}{2}$

Exemple 2

- We have $S_{n+1}=\sum_{k=1}^{n+1} k=\underbrace{1+2+3+\ldots+n}_{S_{n}}+(n+1)$
therefore $S_{n+1}=S_{n}+(n+1)=\frac{n(n+1)}{2}+(n+1)$ (induction hypothesis)

$$
=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}
$$

so $S_{n+1}=\frac{(n+1)(n+2)}{2}$

- That is to say that the property is true for $n+1$
- 3 rd step : (Conclusion) By the principle of induction, we deduce that $\forall n \in \mathbb{N}^{*}, S_{n}=\sum_{k=1}^{n} k=1+2+3+\ldots+n=\frac{n(n+1)}{2}$

Sum and product symbols

- \sum sum : $\underbrace{a_{1}+a_{2}+a_{3}+\ldots+a_{n}}_{n \text { terms }}=\sum_{k=1}^{n} a_{k}=\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{n} a_{j}$
- $\underbrace{a_{0}+a_{1}+a_{2}+a_{3}+\ldots+a_{n}}=\sum_{k=0}^{n} a_{k}$

$$
(n+1) \text { termes }
$$

- If $\forall k=1,2, \ldots n$, we have $a_{k}=a$ then

$$
\sum_{k=1}^{n} a=\underbrace{a+a+a+\ldots+a}_{n \text { terms }}=n \cdot a
$$

- If $a=1$ then $\sum_{k=1}^{n} 1=n$ and

$$
\sum_{k=0}^{n} 1=\underbrace{1+1+\ldots+1}_{(n+1) \text { terms }}=(n+1) \cdot 1=n+1
$$

- $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}, \sum_{k=1}^{n} \lambda a_{k}=\lambda \sum_{k=1}^{n} a_{k}$, where $\lambda \in \mathbb{R}$.

Sum and product symbols

- \prod product : $\underbrace{a_{1} \cdot a_{2} \cdot a_{3} \ldots \cdot a_{n}}=\prod_{k=1}^{n} a_{k}=\underbrace{a_{0} \cdot a_{1} \cdot a_{2} \cdot a_{3} \ldots \cdot a_{n}}=\sum_{k=0}^{n} a_{k}$

$$
n \text { terms } \quad(n+1) \text { terms }
$$

- If $\forall k=1,2, \ldots n$, we have $a_{k}=a$ then $\prod_{k=1}^{n} a=\underbrace{\text { a.a.a...a }}_{n \text { terms }}=a^{n}$
- $\prod_{k=1}^{n} 1=\underbrace{1.1 \cdot 1 \ldots 1}=1^{n}=1=n$ and
n terms
- $\prod_{k=0}^{n} 1=\underbrace{1.1 \cdot 1 \ldots 1}=1^{n+1}=1, \prod_{k=1}^{n} k=1.2 .3 \ldots . n=n!($ factorial $n)$. $(n+1)$ termes
- $\prod_{k=1}^{n}\left(a_{k} \cdot b_{k}\right)=\left(\prod_{k=1}^{n} a_{k}\right) \cdot\left(\prod_{k=1}^{n} b_{k}\right), \prod_{k=0}^{n} \lambda a_{k}=\lambda^{n} \prod_{k=1}^{n} a_{k}$, where $\lambda \in \mathbb{R}$.

