

Final exam answer key (replacement)

Course questions (6 pts)

(1) Can a binary relation be both symmetric and antisymmetric?

Let \Re be a binary relation defined on a set E which is both symmetric and antisymmetric.
Let $x, y \in E$ be such that $x \Re y$. By symmetry, we have $\mathrm{yRx} \quad(0,5)$
So by antisymmetry, we have $x=y . \quad(0,5)$
So: $\forall x, y \in E, x \Re y \Rightarrow x=y$.
Conclusion: The only binary relation that is both symmetric and antisymmetric is equality. $(0,5)$
(2) Let \Re be a reflexive binary relation defined on a set E such that :

$$
\forall x, y, z \in E: x \Re y \text { and } y \Re z \Rightarrow z \Re x \text {. }
$$

Such a relation is called circular.

- Verify that \Re is an equivalence relation.
\mathfrak{R} is reflexive.
Let $x, y \in E$, such that $x R y$.
We have $\forall x, y, z \in E: x \Re y$ and $y \Re z \Rightarrow z \Re x$.
For $z=y$, we have $x \Re y$ and $y \Re y \Rightarrow y \Re x$.
So, \mathfrak{R} is symmetric.
Let $x, y, z \in E$ such that $x \Re y$ and $y \Re z$.
$x \Re y$ and $y \Re z \Rightarrow z \Re x \Rightarrow x \Re z$ because \Re is symmetric. $\quad(0,5)$
Therfore \mathfrak{R} is transitive.
Conclusion : \mathfrak{R} is an equivalence relation. $(0,5)$
(3) Let S be a reflexive and transitive relation defined in a set E and \triangle another relation defined in E by :

$$
\forall x, y \in E, x \Delta y \Leftrightarrow x S y \text { and } y S x .
$$

- Check that Δ is an equivalence relation.

We have $\forall x, y \in E, x \Delta y \Leftrightarrow x S y$ and $y S x$
For $y=x, x \Delta x \Leftrightarrow x S x$ and $x S x$, then Δ is reflexive because S is reflexive. $\quad(0,5)$
We have $\forall x, y \in E, x \Delta y \Leftrightarrow x S y$ and $y S x \Leftrightarrow y S x$ and $x S y \Leftrightarrow y \Delta x$
Then Δ is symmetric.
Let $x, y, z \in E$ such that $x \Delta y$ and $y \Delta z$.

$$
\begin{align*}
\left\{\begin{array} { l }
{ x \Delta y } \\
{ y \Delta z }
\end{array} \Rightarrow \left\{\begin{array}{l}
x S y \wedge y S x \\
y S z \wedge z S y
\end{array}\right.\right. & \Rightarrow\left\{\begin{array}{l}
x S y \wedge y S z \\
y S x \wedge z S y
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
x S y \wedge y S z \\
z S y \wedge y S x
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
x S z \\
z S x
\end{array} \text { because } S\right. \text { is transitive. } \tag{0,75}\\
& \Rightarrow x \Delta z
\end{align*}
$$

So, Δ is transitive.
Conclusion : Δ is an equivalence relation.

Exercise 1 ($8 \mathbf{p t s}$)

We notice $J=] 1,+\infty[$. Let f and $g: J \rightarrow J$ be two maps defined by :

$$
\forall x \in J, f(x)=1+\frac{2}{\sqrt{x}-1} \text { and } g(x)=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)^{2}
$$

(1) Determine $f\left(\left[2,4[)\right.\right.$ and $g^{-1}(\{9\})$.
$f([2,4[)=\{f(x), x \in[2,4[\}$
$x \in[2,4[\Rightarrow 2 \leq x<4 \Rightarrow \sqrt{2} \leq \sqrt{x}<2 \Rightarrow \sqrt{2}-1 \leq \sqrt{x}-1<1$

$$
\begin{aligned}
& \Rightarrow 2<\frac{2}{\sqrt{x}-1} \leq \frac{2}{\sqrt{2}-1} \quad(0,5) \\
& \Rightarrow 3<1+\frac{2}{\sqrt{x}-1} \leq 1+\frac{2}{\sqrt{2}-1} \\
& \Rightarrow 3<f(x) \leq \frac{\sqrt{2}+1}{\sqrt{2}-1} \\
& \Rightarrow 3<f(x) \leq 3+2 \sqrt{2}
\end{aligned}
$$

Then $f([2,4[)=[3,3+2 \sqrt{2}[$.
$(0,5)$
$g^{-1}(\{9\})=\{x \in J, g(x)=9\}$
$g(x)=9 \Rightarrow\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)^{2}=9$
$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}-1}=3$
$(0,5)$
$\Rightarrow \sqrt{x}+1=3 \sqrt{x}-3$
$\Rightarrow \sqrt{x}=2$
$\Rightarrow x=4$
So, $g^{-1}(\{9\})=\{4\}$.
$(0,5)$
(2) Show that f is a bijection from J into J and determine its inverse map.

Let's show that f is injective.
Let $x_{1}, x_{2} \in J$.
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 1+\frac{2}{\sqrt{x_{1}}-1}=1+\frac{2}{\sqrt{x_{2}}-1}$

$$
\begin{align*}
& \Rightarrow \sqrt{x_{1}}-1=\sqrt{x_{2}}-1 \\
& \Rightarrow \sqrt{x_{1}}=\sqrt{x_{2}} \\
& \Rightarrow x_{1}=x_{2} \tag{0,5}\\
& \Rightarrow f \text { is injective. }
\end{align*}
$$

Let's show that f is surjective.
Let $y \in J$, let' look for $x \in J$, such that $y=f(x)$.

$$
\begin{align*}
y=f(x) \Rightarrow y=1+\frac{2}{\sqrt{x}-1} & \Rightarrow \frac{y-1}{2}=\frac{1}{\sqrt{x}-1} \\
& \Rightarrow \frac{2}{y-1}+1=\sqrt{x} \\
& \Rightarrow \frac{y+1}{y-1}=\sqrt{x} \tag{0,5}\\
& \Rightarrow x=\left(\frac{y+1}{y-1}\right)^{2} \tag{0,5}
\end{align*}
$$

We have
$\left(\frac{y+1}{y-1}\right)^{2}-1=\frac{(y+1)^{2}-(y-1)^{2}}{(y-1)^{2}}=\frac{4 y}{(y-1)^{2}}>0$, because $y>1$
Then
$\forall y \in J, \exists x=\left(\frac{y+1}{y-1}\right)^{2} \in J$, such that $y=f(x)$
That is f is surjective.
Consequently, f is bjective.
$\forall y \in J, \forall x \in J, y=f(x) \Leftrightarrow x=f^{-1}(y)$
$f^{-1}: J \rightarrow J$ difined by:

$$
\begin{equation*}
\forall y \in J, f^{-1}(y)=\left(\frac{y+1}{y-1}\right)^{2} \tag{0,5}
\end{equation*}
$$

(3) Check that: $\forall x \in J, g(x)=(f(x))^{2}$.

Let $x \in J$.
$(f(x))^{2}=\left(1+\frac{2}{\sqrt{x}-1}\right)^{2}=\left(\frac{\sqrt{x}-1+2}{\sqrt{x}-1}\right)^{2}=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)^{2}=g(x)$.
(4) Deduce that g is a bijection from J into J and determine its inverse map.

We have $\forall x \in J, g(x)=(f(x))^{2}=(h \circ f)(x)$, where $h(x)=x^{2} \quad(0,5)$
As f and h are bijective from J into J, then g is bijective from J into J, and we have :
$g^{-1}(x)=(h \circ f)^{-1}(x)=f^{-1} \circ h^{-1}(x)$
$(0,5)$
We have $h^{-1}(x)=\sqrt{x}$ and $f^{-1}(x)=\left(\frac{x+1}{x-1}\right)^{2}$
then, $g^{-1}(x)=(h \circ f)^{-1}(x)=f^{-1} \circ h^{-1}(x)=f^{-1}\left(h^{-1}(x)\right)=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)^{2}=g(x)$.
$g^{-1}=g$.
$(0,5)$

Exercise 2 (6 pts)

(1) Show that the following proposition is false:
$\forall n \in \mathbb{N}$, the integer $n^{2}+n+11$ is prime.

For $n=10$, we have $10^{2}+10+11=121=11^{2}=11 \times 11$
That is the integer $10^{2}+10+11$ is not prime.
$\exists n=10 \in \mathbb{N}$, such that the integer $10^{2}+10+11=121$ is not prime.
That is the proposition : $\forall n \in \mathbb{N}$, the integer $n^{2}+n+11$ is prime, is false.
(2) Show by induction that:
$\forall n \in \mathbb{N}^{*}, \sum_{k=1}^{n} \frac{1}{k^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}$.
$1^{\text {st }}$ step: (Initialization) for $n=1$, we have
$\sum_{k=1}^{1} \frac{1}{k^{2}}=\frac{1}{1^{2}}=1 \leq 1=2-\frac{1}{1}$.
So the property is true for $n=1$.
$2^{\text {nd }}$ step: (heredity)
Assume that $\sum_{k=1}^{n} \frac{1}{k^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}$ and show that
$\sum_{k=1}^{n+1} \frac{1}{k^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}} \leq 2-\frac{1}{n+1}$
We have
$\sum_{k=1}^{n+1} \frac{1}{k^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\ldots+\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}=\sum_{k=1}^{n} \frac{1}{k^{2}}+\frac{1}{(n+1)^{2}}(0,5)$
therefore

$$
\begin{align*}
\sum_{k=1}^{n+1} \frac{1}{k^{2}}=\sum_{k=1}^{n} \frac{1}{k^{2}}+\frac{1}{(n+1)^{2}} & \leq 2-\frac{1}{n}+\frac{1}{(n+1)^{2}} \quad \text { (induction hypothesis) } \tag{0,5}\\
& \leq 2-\frac{(n+1)^{2}-n}{(n+1)^{2}} \quad(0,5) \tag{0,5}\\
& \leq 2-\frac{n^{2}+n+1}{(n+1)^{2}} \quad \\
& \leq 2-\frac{n+1}{(n+1)^{2}} \text { because }-\left(n^{2}+n+1\right) \leq-(n+1) \tag{0,5}
\end{align*}
$$

So, $\sum_{k=1}^{n+1} \frac{1}{k^{2}} \leq 2-\frac{1}{n+1}$
That is to say that the property is true for $n+1$.
$3^{r d}$ step : (Conclusion) By the principle of induction, we deduce that :
$\forall n \in \mathbb{N}^{*}, \sum_{k=1}^{n} \frac{1}{k^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}$.

