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Course questions

1 Can a binary relation be both symmetric and antisymmetric?

Let  be a binary relation defined on a set E which is both symmetric and antisymmetric.
Let x,y  E be such that xy. By symmetry, we have yvx.
So by antisymmetry, we have x  y.
So: x,y  E,xy  x  y.
Conclusion: The only binary relation that is both symmetric and antisymmetric is equality.

2 Let  be a reflexive binary relation defined on a set E such that :

x,y, z  E : xy and yz  zx.

Such a relation is called circular.
- Verify that  is an equivalence relation.
 is reflexive.
Let x,y  E, such that xRy.
We have x,y, z  E : xy and yz  zx.
For z  y, we have xy and yy  yx.
So,  is symmetric.
Let x,y, z  E such that xy and yz.
xy and yz  zx  xz because  is symmetric.
Therfore  is transitive.
Conclusion :  is an equivalence relation.

3 Let S be a reflexive and transitive relation defined in a set E and  another relation
defined in E by :

x,y  E, xy  xSy and ySx.

- Check that  is an equivalence relation.

We have x,y  E, xy  xSy and ySx
For y  x, xx  xSx and xSx, then  is reflexive because S is reflexive.
We have x,y  E, xy  xSy and ySx  ySx and xSy  yx
Then  is symmetric.
Let x,y, z  E such that xy and yz.
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So,  is transitive.
Conclusion :  is an equivalence relation.

Exercise 1 8 pts

We notice J  1,. Let f and g : J J be two maps defined by :

x  J, fx  1  2
x  1

and gx 
x  1
x  1

2

.

1 Determine f 2,4 and g19.

f 2,4  fx, x  2,4
x  2,4  2  x  4  2  x  2  2  1  x  1  1

 2  2
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2  1
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Then f 2,4  3,3  2 2 .

g19  x  J, gx  9

gx  9 
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 x  1  3 x  3
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So, g19  4.

2 Show that f is a bijection from J into J and determine its inverse map.

Let’s show that f is injective.
Let x1,x2  J.

fx1   fx2   1  2
x1  1

 1  2
x2  1
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 f is injective.
Let’s show that f is surjective.
Let y  J, let’ look for x  J, such that y  fx.
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Then

y  J, x  y  1
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 J, such that y  fx

That is f is surjective.
Consequently, f is bjective.
y  J,x  J, y  fx  x  f1y
f 1 : J J difined by :

y  J, f1y  y  1
y  1

2

3 Check that : x  J, gx  fx2.

Let x  J.
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 gx.

4 Deduce that g is a bijection from J into J and determine its inverse map.

We have x  J,gx  fx2  h  fx, where hx  x2

As f and h are bijective from J into J, then g is bijective from J into J, and we have :
g1x  h  f1x  f1  h1x

We have h1x  x and f1x  x  1
x  1

2

then, g1x  h  f1x  f1  h1x  f1h1x 
x  1
x  1
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 gx.

g1  g.

Exercise 2 6 pts

1 Show that the following proposition is false :
 n  , the integer n2  n  11 is prime.
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For n  10, we have 102  10  11  121  112  11  11
That is the integer 102  10  11 is not prime.
 n  10  , such that the integer 102  10  11  121 is not prime.
That is the proposition :  n  , the integer n2  n  11 is prime, is false.

2 Show by induction that :
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1st step: (Initialization) for n  1,we have


k1

1
1
k2

 1
12

 1  1  2  1
1
.

So the property is true for n  1.
2nd step: (heredity )

Assume that 
k1

n
1
k2

 1
12

 1
22

 1
32

. . . 1
n2

 2  1
n and show that


k1

n1
1
k2

 1
12

 1
22

 1
32

. . . 1
n2

 1
n  12

 2  1
n  1

We have


k1

n1
1
k2

 1
12

 1
22

. . . 1
n2

 1
n  12

 
k1

n
1
k2

 1
n  12

therefore


k1

n1
1
k2

 
k1

n
1
k2

 1
n  12

 2  1
n  1

n  12
(induction hypothesis)

 2  n  12  n
n  12

 2  n2  n  1
n  12

 2  n  1
n  12

because n2  n  1  n  1

So, 
k1

n1
1
k2

 2  1
n  1

That is to say that the property is true for n  1.
3rd step : (Conclusion) By the principle of induction, we deduce that :
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Good luck
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