Final Exam of Mechanics

Course questions: (5pts)

1- Why use dimensional analysis?
2- What can it say about the total mechanical energy of a system in the presence of frictional forces?
3- What is the difference between a conservative force (قوة منحفضة) and a non-conservative force? Give an example for each one.
4- Calculate the work of a force $\mathrm{F}=1.510^{4} \mathrm{~N}$ supplied to move a body a height (AB) of 3 meters (vertically).
5- Calculate the work of the spring return force with stiffness constant $\mathrm{k}(\overrightarrow{d l}=d x . \vec{l})$.

Exercise 1: (7pts)

Consider the fixed reference frame $\mathrm{R}(\mathrm{Oxyz})$ where point O^{\prime} moves along axis ($\mathbf{O x}$) with constant velocity $\mathbf{v}_{\mathbf{0}}$. Linked to O^{\prime} is the moving reference frame ($\mathrm{O}^{\prime} \mathrm{x}^{\prime} \mathrm{y}^{\prime} z^{\prime}$) which rotates around (Oz) with constant angular velocity ω. A moving point M moves along the ($\mathrm{O}^{\prime} \mathbf{y}^{\prime}$) axis with constant acceleration γ.
At time $\mathrm{t}=0$, the axes (Ox) and ($\mathrm{O}^{\prime} \mathrm{x}^{\prime}$) are coincident and M is at O .

Calculate in the moving frame:
1- The relative velocity $\overrightarrow{v_{r}}$ and the entrainment velocity $\overrightarrow{v_{e}}$, deduce the absolute velocity $\overrightarrow{v_{a}}$.

2- The relative acceleration $\overrightarrow{a_{r}}$, the entrainment acceleration $\overrightarrow{a_{e}}$ and Coriolis acceleration $\overrightarrow{a_{c}}$, deduce the absolute acceleration $\overrightarrow{a_{a}}$.

Exercise 2: (8pts)

Consider a small block of mass $m=2 \mathrm{~kg}$ dropped without initial velocity at point A of an inclined plane at an angle $\alpha=30^{\circ}$ to the horizontal. Point A is at a height $h_{A}=5 \mathrm{~m}$ from the horizontal.
1- Knowing that the coefficient of dynamic friction on plane $\mathbf{A B}$ is $\boldsymbol{\mu}_{\mathrm{d}}=\mathbf{0} .2$, applying the fundamental principle of dynamics, what is the acceleration of the block on plane $\mathrm{AB}=8 \mathrm{~m}$?

2- Calculate the speed of the block when it reaches point B.
3- Using the kinetic energy theorem, find the speed of the block at point B.
4- At point B, the block hits a spring with stiffness constant $k=100 \mathrm{~N} / \mathrm{m}$ at speed V_{B}. Calculate the maximum compression (x) of the spring (given $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$).

Answers to the final Mechanics exam

Course question: (5pts)

1- The advantages of using dimensional analysis are :
Find the dimension of a physical quantity, the units and nature of the quantities, check the homogeneity of a physical law and find the physical law of a physical quantity. (01 pts) 2- Total mechanical energy is non-conservative because the system is subject to nonconservative forces such as friction. (0.5pts)
3- The difference between a conservative force and a non-conservative force is:

- A force is said to be conservative if its work does not depend on the path followed, and it is said to derive from a potential ($\mathbf{0 . 2 5} \mathbf{~ p t s}$) Examples: Force of gravity (0.25 pts)
- A force is said to be non-conservative if its work depends on the path followed (0.25 pts), like the force of friction. (0.25 pts)
4- Calculate the work done by this force to move the car by a height (AB) of 3 meters. Translated with www.DeepL.com/Translator (free version)

$$
\boldsymbol{W}_{\boldsymbol{A B}}(\overrightarrow{\mathbf{F}})=|\overrightarrow{\boldsymbol{F}}| \cdot|\overrightarrow{\boldsymbol{A B}}| \cdot \cos \boldsymbol{\alpha}=\mathbf{F} \cdot \mathbf{d} \cdot \cos \mathbf{0}=1.5 \quad 10^{4} \cdot 3=4.5 \quad 10^{4} \mathrm{~J}(\mathbf{0 1} \mathrm{pts})
$$

5-Calculate the work of the restoring force of a spring with stiffness constant k .

$\vec{F}=-k x \vec{\imath}, \overrightarrow{d l}=d x \cdot \vec{\imath}$ et $d W=\vec{F} \cdot \overrightarrow{d l}(0.5 \mathrm{pts})$

$$
\begin{aligned}
& d W=-d E_{p}=-k x . d x \Rightarrow d E_{p}=k x d x(0.5 \mathrm{pts}) \\
& \Rightarrow \int d E p=k \int_{x_{i}}^{x_{f}} x d x \Rightarrow E p=\frac{1}{2} k\left(x_{f}^{2}-x_{i}^{2}\right)=\frac{1}{2} k x^{2}(0.5 \mathrm{pts})
\end{aligned}
$$

Exercise 1: (7pts)

1- Speeds: 3.5pts

M moves along the Oy' axis with constant acceleration, so: $\overrightarrow{O^{\prime} M}=Y \overrightarrow{u_{y}}$ with $\gamma=\frac{d v}{d t}$ and at $\mathrm{t}=0$ the point M is at O^{\prime} :
$\gamma=\frac{d v}{d t} \Rightarrow \int_{0}^{v} d v=\gamma \int_{0}^{t} d t$ so $v=\gamma t\left(\right.$ at $\left.\mathrm{t}=0, \mathrm{v}_{0}(\mathrm{M})=0\right)$
$v=\gamma t=\frac{d Y}{d t} \Rightarrow \int_{0}^{Y} d Y=\gamma \int_{0}^{t} t d t$ so $Y=\frac{1}{2} \gamma t^{2}\left(\right.$ at $\left.\mathrm{t}=0, \mathrm{Y}_{0}(\mathrm{M})=0\right)$
$\overrightarrow{O^{\prime} M}=\frac{1}{2} \gamma t^{2} \overrightarrow{u_{y}}$
(0.5pts)
O^{\prime} moves on Ox with a constant speed v_{0} so $\overrightarrow{O O^{\prime}}=x \vec{\imath}$ and $v_{0}=\frac{d x}{d t}$ and à $\mathrm{t}=0$, axis ($\left.\mathrm{O}^{\prime} \mathrm{x}^{\prime}\right)$ is confused with (Ox).
$v_{0}=\frac{d x}{d t} \Rightarrow \int_{0}^{x} d x=v_{0} \int_{0}^{t} d t$ so $x=v_{0} t\left(\right.$ at $\left.\mathrm{t}=0, \mathrm{x}_{0}\left(\mathrm{O}^{\prime}\right)=0\right)$ then $\overrightarrow{O O^{\prime}}=v_{0} t \vec{\imath}$

Department of Mathematics
Sunday: 14/01/2024
Duration: 01 h 30mn
$\overrightarrow{\mathrm{v}_{\mathrm{r}}}=\frac{\overrightarrow{\mathrm{dO} \mathrm{O}^{\prime}}}{\mathrm{dt}}=\gamma \mathrm{t} \overrightarrow{\mathbf{u}_{\mathbf{y}}}$
$\overrightarrow{\mathrm{v}_{\mathrm{e}}}=\frac{\overrightarrow{\mathrm{dOO}^{\prime}}}{\mathrm{dt}}+\vec{\omega} \because \because \overrightarrow{\mathrm{O}^{\prime} \mathrm{M}}(0.25 \mathrm{pts})$ with $\vec{\omega}=\left(\begin{array}{l}0 \\ 0 \\ \omega\end{array}\right)(0.25 \mathrm{pts})$
$\overrightarrow{u_{x}}=\cos \theta \vec{\imath}+\sin \theta \vec{\jmath}$ and $\overrightarrow{u_{y}}=-\sin \theta \vec{\imath}+\cos \theta \vec{\jmath}$
Using the passage table :
So $\vec{\imath}=\cos \theta \overrightarrow{u_{x}}-\sin \theta \overrightarrow{u_{y}}$

	$\overrightarrow{u_{x}}$	$\overrightarrow{u_{y}}$
$\vec{\imath}$	$\operatorname{Cos} \theta$	$-\sin \theta$
$\vec{\jmath}$	$\sin \theta$	$\cos \theta$

$\frac{\overline{\mathrm{d} 0 \mathrm{O}^{\prime}}}{\mathrm{dt}}=\mathrm{v}_{0} \overrightarrow{\mathrm{l}}=\mathrm{v}_{0}\left(\cos \omega t \overrightarrow{\mathrm{u}_{\mathrm{x}}}-\sin \omega \mathrm{t} \overrightarrow{\mathrm{u}_{\mathrm{y}}}\right)(0.5 \mathrm{pts})$
$\vec{\omega} \therefore \cdot \overrightarrow{\mathrm{O}^{\prime} \mathrm{M}}=\left|\begin{array}{ccc}\overrightarrow{\mathrm{u}_{\mathrm{x}}} & \overrightarrow{\mathrm{u}_{\mathrm{y}}} & \overrightarrow{\mathrm{u}_{\mathrm{z}}} \\ 0 & 0 & \omega \\ 0 & \frac{1}{2} \gamma \mathrm{t}^{2} & 0\end{array}\right|=-\frac{1}{2} \gamma \mathrm{t}^{2} \omega \overrightarrow{\mathrm{u}_{\mathrm{x}}}$
$\overrightarrow{\mathbf{v}_{\mathbf{e}}}=\left(-\frac{1}{2} \gamma t^{2} \omega+v_{0} \cos \omega t\right) \overrightarrow{\mathbf{u}_{\mathbf{x}}}+\left(-v_{0} \sin \omega t\right) \overrightarrow{\mathbf{u}_{\mathbf{y}}}$
$\overrightarrow{\mathbf{v}_{\mathbf{a}}}=\overrightarrow{\mathbf{v}_{\mathbf{r}}}+\overrightarrow{\mathbf{v}_{\mathbf{e}}}=\left(-\frac{1}{2} \gamma t^{2} \omega+\mathrm{v}_{0} \cos \omega t\right) \overrightarrow{\mathbf{u}_{\mathbf{x}}}+\left(\gamma t-v_{0} \sin \omega t\right) \overrightarrow{\mathbf{u}_{\mathbf{y}}}$
1- The accelerations : 3.5 pts
$\overrightarrow{\mathbf{a}_{\mathbf{r}}}=\frac{\overrightarrow{\mathbf{d \mathbf { v } _ { \mathbf { r } }}}}{\mathbf{d t}}=\gamma \overrightarrow{\mathbf{u}_{\mathbf{y}}} \quad(1 \mathrm{pts})$
$\overrightarrow{\mathrm{a}_{\mathrm{e}}}=\frac{\overline{\mathrm{d}^{2} \mathrm{OO}^{\prime}}}{\mathrm{dt}^{2}}+\frac{\overrightarrow{\mathrm{d} \omega}}{\mathrm{dt}} \therefore \because \overrightarrow{\mathrm{O}^{\prime} \mathrm{M}}+\vec{\omega} . \because \vec{\omega} . \because \overrightarrow{\mathrm{O}^{\prime} \mathrm{M}}(0.5 \mathrm{pts})$ with $\frac{\overrightarrow{\mathrm{d}^{2} \mathrm{OO}^{\prime}}}{\mathrm{dt}^{2}}=\overrightarrow{0}$
$\vec{\omega} \therefore \because \vec{\omega} \therefore \because \cdot \overrightarrow{\mathrm{O}^{\prime} \mathrm{M}}=\left|\begin{array}{ccc}\overrightarrow{\mathrm{u}_{\mathrm{x}}} & \overrightarrow{\mathrm{u}_{\mathrm{y}}} & \overrightarrow{\mathrm{u}_{\mathrm{z}}} \\ 0 & 0 & \omega \\ -\frac{1}{2} \gamma \mathrm{t}^{2} \omega & 0 & 0\end{array}\right|=-\frac{1}{2} \gamma \mathrm{t}^{2} \omega^{2} \overrightarrow{\mathrm{u}_{\mathrm{y}}}$
$\overrightarrow{\mathrm{a}_{\mathrm{e}}}=-\frac{1}{2} \gamma \mathrm{t}^{2} \omega^{2} \overrightarrow{\mathrm{u}_{\mathrm{y}}}$ (0.25pts)
$\overrightarrow{\mathbf{a}_{\mathbf{c}}}=\mathbf{2} \vec{\omega} \therefore \overrightarrow{\mathbf{v}_{\mathbf{r}}}=\left|\begin{array}{ccc}\overrightarrow{\mathrm{u}_{\mathrm{x}}} & \overrightarrow{\mathrm{u}_{\mathrm{y}}} & \overrightarrow{\mathrm{u}_{\mathrm{z}}} \\ 0 & 0 & 2 \omega \\ 0 & \gamma \mathrm{t} & 0\end{array}\right|=-2 \gamma \mathrm{t} \boldsymbol{\omega} \overrightarrow{\mathbf{u}_{\mathbf{x}}}(0.5 \mathrm{pts})$
$\overrightarrow{\mathrm{a}_{\mathrm{a}}}=\overrightarrow{\mathrm{a}_{\mathrm{r}}}+\overrightarrow{\mathrm{a}_{\mathrm{e}}}+\overrightarrow{\mathrm{a}_{\mathrm{c}}}(0.25 \mathrm{pts})$
So $\overrightarrow{\mathbf{a}_{\mathbf{a}}}=(-2 \gamma \mathrm{t} \omega) \overrightarrow{\mathrm{u}_{\mathrm{x}}}+\left(\gamma-\frac{1}{2} \gamma \mathrm{t}^{2} \omega^{2}\right) \overrightarrow{\mathrm{u}_{\mathrm{y}}}(0.5 \mathrm{pts})$

Exercise 2: (8pts)

(0.5pts)

1 - The acceleration of mass m on $\mathrm{AB}: \underline{03 \mathrm{pts}}$
By applying the PFD : $\Sigma \vec{F}=m \vec{a} \Rightarrow \vec{p}+\overrightarrow{\mathrm{R}_{N}}+\vec{f}=m \vec{a} \quad(0.5 \mathrm{pts})$
Following (Ox) $-\mathrm{f}+\mathrm{p}_{\mathrm{x}}=-\mathrm{f}+\mathrm{m} \mathrm{g} \sin \alpha=\mathrm{ma} \ldots .$. (1)(0.5pts)
Following (Oy) $\mathrm{R}_{\mathrm{N}}-\mathrm{p}_{\mathrm{y}}=0 \Rightarrow \mathrm{R}_{\mathrm{N}}=\mathrm{mg} \cos \alpha \ldots \ldots$....(2) (0.5pts)
$\mu_{\mathrm{d}}=\operatorname{tg} \varphi=\mathrm{F}_{\mathrm{f}} / \mathrm{R}_{\mathrm{N}}(0.5 \mathrm{pts}) \Rightarrow \mathrm{F}_{\mathrm{f}}=\mathrm{N} \operatorname{tg} \varphi$ so $\mathrm{F}_{\mathrm{f}}=\mu_{\mathrm{d}} \mathrm{mg} \cos \alpha \quad$ (0.5 pts)
(1): $-\mu_{\mathrm{d}} \mathrm{mg} \cos \alpha+\mathrm{mg} \sin \alpha=\mathrm{m} \cdot \mathrm{a} \Rightarrow \mathrm{a}=\mathrm{g}\left(\sin \alpha-\mu_{\mathrm{d}} \cos \alpha\right)=3.27 \mathrm{~m} / \mathrm{s}^{2} \quad$ (0.5 pts)

2- The velocity at point B : we have $v_{A}=0$
and $v_{B}^{2}-v_{A}^{2}=2 a(A B) \Rightarrow v_{B}^{2}=2 a(A B) \quad(0.5 \mathrm{pts})$
with $(\mathrm{AB})=8 \mathrm{~m} \quad \Rightarrow v_{B}=\sqrt{2(3.27)(8)}=7.23 \mathrm{~m} / \mathrm{s}^{-1} \quad(0.5 \mathrm{pts})$
3- Applying the kinetic energy theorem, find the speed of the block when it reaches point B.
$\Delta E c=\Sigma W_{f_{\text {ext }}} \Rightarrow E c_{B}-E c_{A}=W_{p}+W_{F f}+W_{R N}(0.5 \mathrm{pts})$
$\frac{1}{2} m v_{B}^{2}=m g \sin \alpha A B-F_{f} A B$ (0.5 pts)
And
$\frac{1}{2} m v_{B}^{2}=m g \sin \alpha A B-\mu_{d} \mathrm{mg} \cos \alpha A B$ so $v_{B}=\sqrt{g \cdot 2 \cdot A B \sin \alpha-2 \mu_{d} \mathrm{~g} \cos \alpha A B}$ $v_{B}=\sqrt{g .2 . A B\left(\sin \alpha-\mu_{d} \cos \alpha\right)}(0.5 \mathrm{pts})$

4- At point B, the block touches a spring with stiffness constant $\mathrm{k}=100 \mathrm{~N} / \mathrm{m}$ at speed VB.
Calculate the maximum compression (x) of the spring? (we give $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$).
$\Delta E_{M}=E_{M_{C}}-E_{M_{B}}=\Sigma W_{f_{N C}} \Rightarrow\left(E_{C_{C}}+E_{P_{C}}\right)-\left(E_{C_{B}}+E_{P_{B}}\right)=W_{F f}(01 \mathrm{pts})$
$\Rightarrow \frac{1}{2} k x^{2}-\frac{1}{2} m v_{B}^{2}-m g h^{\prime}=\frac{1}{2} k x^{2}-\frac{1}{2} m v_{B}^{2}-m g(A B \sin \alpha)=-\mu_{d} \mathrm{mg} \cos \alpha A B$ (0.5 pts)
So; $\mathrm{x}=\sqrt{\frac{m\left(v_{B}^{2}+g 2(A B \sin \alpha)-\mu_{d} 2 \mathrm{~g} \cos \alpha A B\right)}{k}}=1.07 \mathrm{~m}(0.5 \mathrm{pts})$

