

Final exam

Exercise 1 (8 pts)

We define the maps $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{R}^{+} \rightarrow[2,+\infty[$ by :

$$
\begin{aligned}
& \forall x \in \mathbb{R}, f(x)=1+\sqrt{1+x+x^{2}} \\
& \forall x \in \mathbb{R}^{+}, g(x)=1+\sqrt{1+x^{2}}
\end{aligned}
$$

(1) Find $f\left(\left\{x \in \mathbb{R} \backslash x^{2}+x-\alpha(\alpha+1)=0\right.\right.$, where $\left.\left.\alpha \in \mathbb{R}^{+*}\right\}\right)$ and $f^{-1}\left(\left\{y \in \mathbb{R}^{+} \backslash 2|y|=1\right\}\right)$.
(2) Is f injective? surjective? bijective?
(3) Show that g is bijective and determine g^{-1}.

Exercise 2 (6 pts)

Let $n \in \mathbb{N}^{*}$.
(1) By a direct proof, show that :

$$
n \text { is a multiple of } 3 \Rightarrow n^{3} \text { is a multiple of } 3
$$

(2) Using the contrapositive, show that:

$$
n^{3} \text { is a multiple of } 3 \Rightarrow n \text { is a multiple of } 3 .
$$

(3) Show by contadiction that $\sqrt[3]{3}$ is an irrational number .

Exercise 3 (6 pts)
In \mathbb{R} we define the binary relations R and S by :

$$
\begin{aligned}
& \forall x, y \in \mathbb{R}, x R y \Leftrightarrow x-y \in \mathbb{Z} \\
& \forall x, y \in \mathbb{R}, x S y \Leftrightarrow x-y \in \mathbb{N}
\end{aligned}
$$

(1) Show that R is an equivalence relation.
(2) Determine the equivalence classe of $\frac{1}{2}$.
(3) Show that S is an order relation.
(4) Is this order total?

Final exam answer key

Exercise 1 ($\mathbf{8} \mathbf{p t s}$)

We define the maps $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$and $g: \mathbb{R}^{+} \rightarrow[2,+\infty[$ by :

$$
\begin{aligned}
& \forall x \in \mathbb{R}, f(x)=1+\sqrt{1+x+x^{2}} \\
& \forall x \in \mathbb{R}^{+}, g(x)=1+\sqrt{1+x^{2}}
\end{aligned}
$$

(1) Find $f\left(\left\{x \in \mathbb{R} \backslash x^{2}+x-\alpha(\alpha+1)=0\right.\right.$, where $\left.\left.\alpha \in \mathbb{R}^{+*}\right\}\right)$ and $f^{-1}\left(\left\{y \in \mathbb{R}^{+} \backslash 2|y|=1\right\}\right)$.

We put $A=\left\{x \in \mathbb{R} \backslash x^{2}+x-\alpha(\alpha+1)=0\right.$, where $\left.\alpha \in \mathbb{R}^{+*}\right\}$ and $B=\left\{y \in \mathbb{R}^{+} \backslash 2|y|=1\right\}$.
We have $x^{2}+x-\alpha(\alpha+1)=0 \Leftrightarrow x^{2}-\alpha^{2}+x-\alpha=0$

$$
\begin{align*}
& \Leftrightarrow(x-\alpha)(x+\alpha)+x-\alpha=0 \\
& \Leftrightarrow(x-\alpha)(x+\alpha+1)=0 \tag{1}\\
& \Leftrightarrow x=\alpha \text { or } x=-\alpha-1
\end{align*}
$$

Then $A=\{\alpha,-\alpha-1\}$
$f(A)=\{f(\alpha), f(-\alpha-1)\}=\left\{1+\sqrt{1+\alpha+\alpha^{2}}, 1+\sqrt{1+(-\alpha-1)+(-\alpha-1)^{2}}\right\}$

$$
\begin{equation*}
=\left\{1+\sqrt{1+\alpha+\alpha^{2}}, 1+\sqrt{1++\alpha+\alpha^{2}}\right\}=\left\{1+\sqrt{1+\alpha+\alpha^{2}}\right\} . \tag{0,25}
\end{equation*}
$$

$B=\left\{y \in \mathbb{R}^{+} \backslash 2|y|=1\right\}=\left\{y \in \mathbb{R}^{+} \backslash|y|=\frac{1}{2}\right\}=\left\{\frac{1}{2}\right\}$.
$f^{-1}(B)=\left\{x \in \mathbb{R}: f(x)=\frac{3}{2}\right\}$
$f(x)=\frac{1}{2} \Rightarrow 1+\sqrt{1+x+x^{2}}=\frac{1}{2} \Rightarrow \sqrt{1+x+x^{2}}=\frac{1}{2}-1=-\frac{1}{2}$

$$
\begin{equation*}
\Rightarrow 1+x+x^{2}=\frac{1}{4} \Rightarrow x^{2}+x+\frac{3}{4}=0 \tag{0,5}
\end{equation*}
$$

This equation has no solution because its discriminant $\Delta=-2<0$.
So, $f^{-1}(B)=\varnothing$.
(2) Is f injective? surjective? bijective?
f is not injective, because $\exists x_{1}=\alpha, x_{2}=-\alpha-1$, such that :
$\alpha \neq-\alpha-1$ and $f(\alpha)=f(-\alpha-1)=1+\sqrt{1+\alpha+\alpha^{2}}$, for $\alpha \in \mathbb{R}^{+*}$.
f is not surjective, because, $\exists y=\frac{1}{2} \in \mathbb{R}^{+}, \forall x \in \mathbb{R}: f(x) \neq \frac{1}{2}$.
That is, there exists $y=\frac{1}{2} \in \mathbb{R}^{+}$, which does not have a preimage.
As f is neither injective nor surjective, then it is not bijective.
(3) Show that g is bijective and determine g^{-1}.
g is injective $\Leftrightarrow \forall x_{1}, x_{2} \in \mathbb{R}^{+},\left(g\left(x_{1}\right)=g\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right)$

Let $x_{1}, x_{2} \in \mathbb{R}^{+}$.

$$
\begin{align*}
g\left(x_{1}\right)=g\left(x_{2}\right) & \Rightarrow 1+\sqrt{1+x_{1}^{2}}=1+\sqrt{1+x_{2}^{2}} \tag{0,25}\\
& \Rightarrow \sqrt{1+x_{1}^{2}}=\sqrt{1+x_{2}^{2}} \Rightarrow 1+x_{1}^{2}=1+x_{2}^{2} \\
& \Rightarrow x_{1}^{2}=x_{2}^{2} \Rightarrow\left|x_{1}\right|=\left|x_{2}\right| \\
& \Rightarrow x_{1}=x_{2}, \text { because } x_{1}, x_{2} \in \mathbb{R}^{+} . \tag{0,75}
\end{align*}
$$

Hence g is injective.
g is surjective $\Leftrightarrow \forall y \in\left[2,+\infty\left[, \exists x \in \mathbb{R}^{+}: y=g(x)\right.\right.$.
Let $y \in\left[2,+\infty\left[\right.\right.$. Let's look for an $x \in \mathbb{R}^{+}$, such that $y=g(x)$.
$y=g(x) \Rightarrow y=1+\sqrt{1+x^{2}} \Rightarrow y-1=\sqrt{1+x^{2}}$

$$
\begin{align*}
& \Rightarrow(y-1)^{2}=1+x^{2} \\
& \Rightarrow x^{2}=(y-1)^{2}-1 \geq 0, \text { because } y \geq 2 . \\
& \Rightarrow x= \pm \sqrt{(y-1)^{2}-1}= \pm \sqrt{y^{2}-2 y} \tag{1}
\end{align*}
$$

$\forall y \in\left[2,+\infty\left[, \exists x=\sqrt{y^{2}-2 y} \in \mathbb{R}^{+}: y=g(x)=1+\sqrt{1+x^{2}}\right.\right.$.
So, g is surjective.
As g is injective and sirjective, then it is bijective.
$\forall y \in\left[2,+\infty\left[, \exists!x=\sqrt{y^{2}-2 y} \in \mathbb{R}^{+}: y=g(x)=1+\sqrt{1+x^{2}}\right.\right.$.
Hence, g admits an inverse map $g^{-1}:\left[2,+\infty\left[\rightarrow \mathbb{R}^{+}\right.\right.$defined by :

$$
\begin{equation*}
\forall y \in\left[2,+\infty\left[, g^{-1}(y)=\sqrt{y^{2}-2 y} .\right.\right. \tag{0,75}
\end{equation*}
$$

Exercise 2 (6 pts)

Let $n \in \mathbb{N}^{*}$.
(1) By a direct proof, show that:

$$
n \text { is a multiple of } 3 \Rightarrow n^{3} \text { is a multiple of } 3
$$

n is a multiple of $3 \Rightarrow \exists k \in \mathbb{N}^{*}: n=3 k$
$n^{3}=(3 k)^{3}=3^{3} k^{3}=3\left(3^{2} k^{3}\right)=3 l$ with $l=\left(3^{2} k^{3}\right) \in \mathbb{N}^{*}$.
That is n^{3} is a multiple of 3
(2) By using the contrapositive, show that:

$$
n^{3} \text { is a multiple of } 3 \Rightarrow n \text { is a multiple of } 3 .
$$

Let's show that :

$$
\begin{equation*}
n \text { is not a multiple of } 3 \Rightarrow n^{3} \text { is not a multiple of } 3 \text {. } \tag{0,5}
\end{equation*}
$$

n is not a multiple of $3 \Rightarrow n=3 k+1$ or $n=3 k+2$, where $k \in \mathbb{N}^{*}$. $\quad(0,5)$
If $n=3 k+1$, then $n^{3}=(3 k+1)^{3}=3^{3} k^{3}+3(3 k)^{2}+3(3 k)+1^{3}$

$$
\begin{equation*}
=3\left(3^{2} k^{3}+3^{2} k^{2}+3 k\right)+1=3 l+1 \tag{0,5}
\end{equation*}
$$

with $l=\left(3^{2} k^{3}+3^{2} k^{2}+3 k\right) \in \mathbb{N}^{*}$.
That is n^{3} is not a multiple of 3 .
If $n=3 k+2$, then $n^{3}=(3 k+2)^{3}=3^{3} k^{3}+3 \cdot 2 \cdot(3 k)^{2}+3 \cdot 2^{2} \cdot(3 k)+2^{3}$

$$
\begin{align*}
& =3^{3} k^{3}+3 \cdot 2 \cdot(3 k)^{2}+3 \cdot 2^{2} \cdot(3 k)+6+2 \\
& =3\left(3^{2} k^{3}+2 \cdot 3^{2} k^{2}+2^{2} \cdot 3 k+2\right)+2=3 l+2 \tag{0,5}
\end{align*}
$$

with $l=\left(3^{2} k^{3}+2.3^{2} k^{2}+2^{2} \cdot 3 k+2\right) \in \mathbb{N}^{*}$.
That is n^{3} is not a multiple of 3 .
Therefore,

$$
n \text { is not a multiple of } 3 \Rightarrow n^{3} \text { is not a multiple of } 3 \text {. }
$$

Consequently

$$
\begin{equation*}
n^{3} \text { is a multiple of } 3 \Rightarrow n \text { is a multiple of } 3 . \tag{0,5}
\end{equation*}
$$

(3) Show by contadiction that $\sqrt[3]{3}$ is an irrational number.

We assume that : $\sqrt[3]{3}$ is a rational number.
$\sqrt[3]{3} \in \mathbb{Q} \Rightarrow \sqrt[3]{3}=\frac{a}{b}$ with a and b are natural numbers that are prime to each other.
$\begin{aligned} \Rightarrow 3=\frac{a^{3}}{b^{3}} \Rightarrow a^{3}=3 b^{3} & \Rightarrow a^{3} \text { is a multiple of } 3 . \\ & \Rightarrow a \text { is a multiple of } 3 .\end{aligned}$ $\Rightarrow a$ is a multiple of 3 .

So, $a=3 k$ with $k \in \mathbb{N}^{*}$.
Hence, $a^{3}=3 b^{3} \Rightarrow(3 k)^{3}=3 b^{3} \Rightarrow 3^{3} k^{3}=3 b^{3}$
$\Rightarrow b^{3}=3\left(3 k^{3}\right)$
$\Rightarrow b^{3}$ is a multiple of 3 .
$\Rightarrow b$ is a multiple of 3 .
a and b are both multiple of 3 , which contradicts the hypothesis.
(a and b are prime to each other).
Conclusion: $\sqrt[3]{3}$ is an irrational number.
Exercise 3 (6 pts)
In \mathbb{R} we define the relations R and S by :

$$
\begin{aligned}
& \forall x, y \in \mathbb{R}, x R y \Leftrightarrow x-y \in \mathbb{Z} \\
& \forall x, y \in \mathbb{R}, x S y \Leftrightarrow x-y \in \mathbb{N}
\end{aligned}
$$

(1) Show that R is an equivalence relation.
R is reflexive $\Leftrightarrow \forall x \in \mathbb{R}, x R x$.
Let $x \in \mathbb{R}$.
We have $x-x=0 \in \mathbb{Z} \Rightarrow x R x$.
Hence R is reflexive.
R is symmetric $\Leftrightarrow \forall x, y \in \mathbb{R},(x R y \Rightarrow y R x)$.
Let $x, y \in \mathbb{R}$.

$$
\begin{align*}
x R y \Rightarrow x-y \in \mathbb{Z} \Rightarrow \exists k \in \mathbb{Z}: x-y= & k \tag{0,25}\\
& \Rightarrow \exists k \in \mathbb{Z}:-(x-y)=-k \\
& \Rightarrow \exists k \in \mathbb{Z}: y-x=-k \\
& \Rightarrow \exists k^{\prime}=-k \in \mathbb{Z}: y-x=k^{\prime} \tag{0,5}\\
& \Rightarrow x-y \in \mathbb{Z} \\
& \Rightarrow y R x
\end{align*}
$$

So, R is symmetric.
R is transitive $\Leftrightarrow \forall x, y, z \in \mathbb{R},(x R y \wedge y R z \Rightarrow x R z)$.
Let $x, y, z \in \mathbb{R}$.

$$
\left\{\begin{array} { r l }
{ x R y } \tag{0,25}\\
{ y R z }
\end{array} \Rightarrow \left\{\begin{array}{l}
x-y \in \mathbb{Z} \\
y-z \in \mathbb{Z}
\end{array} \left\lvert\,\left\{\begin{array}{r}
\exists k \in \mathbb{Z}: x-y=k \\
\exists k^{\prime} \in \mathbb{Z}: y-z=k^{\prime}
\end{array}\right\}\right.\right.\right.
$$

So, R is transitive.
As R is reflexive, symmetric and transitive, then it is an equivalence relation.
(2) Determine the equivalence classe of $\frac{1}{2}$.

$$
\begin{align*}
& c l\left(\frac{1}{2}\right)=\overline{\left(\frac{1}{2}\right)}=\left\{x \in \mathbb{Z}: x R \frac{1}{2}\right\} \\
& x R \frac{1}{2} \Rightarrow x-\frac{1}{2} \in \mathbb{Z} \Rightarrow \exists k \in \mathbb{Z}: x-\frac{1}{2}=k \\
& \Rightarrow \exists k \in \mathbb{Z}: x=\frac{1}{2}+k . \\
& c l\left(\frac{1}{2}\right)=\overline{\left(\frac{1}{2}\right)}=\left\{\frac{1}{2}+k, k \in \mathbb{Z}\right\}=\left\{\frac{2 k+1}{2}, k \in \mathbb{Z}\right\}=\left\{\ldots,-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots \frac{2 n+1}{2} \ldots\right\} . \tag{0,5}
\end{align*}
$$

(3) Show that S is an order relation.
S is reflexive $\Leftrightarrow \forall x \in \mathbb{R}, x S x$.
Let $x \in \mathbb{R}$.
We have $x-x=0 \in \mathbb{N} \Rightarrow x S x$.
Hence S is reflexive.
S is antisymmetric $\Leftrightarrow \forall x, y \in \mathbb{R},(x S y \wedge y S x \Rightarrow x=y)$.
Let $x, y \in \mathbb{R}$.

$$
\begin{align*}
x S y \tag{0,25}\\
y S x
\end{align*} \Rightarrow\left\{\begin{array}{l}
x-y \in \mathbb{N} \\
y-x \in \mathbb{N}
\end{array} \left\lvert\,\left\{\begin{array}{c}
\exists k \in \mathbb{N}: x-y=k \tag{0,5}\\
\exists k^{\prime} \in \mathbb{N}: y-x=k^{\prime}
\end{array}\right\}\right.\right.
$$

So, S is antisymmetric.
S is transitive $\Leftrightarrow \forall x, y, z \in \mathbb{R},(x S y \wedge y S z \Rightarrow x s z)$.
Let $x, y, z \in \mathbb{R}$.

$$
\begin{align*}
&\left\{\begin{array} { l }
{ x S y } \\
{ y S z }
\end{array} \Rightarrow \left\{\begin{array}{rl}
x-y \in \mathbb{N} & \Rightarrow\left\{\begin{array}{r}
\exists k \in \mathbb{N}: x-y=k \\
y-z \in \mathbb{N}
\end{array}\right. \\
\exists k^{\prime} \in \mathbb{N}: y-z=k^{\prime}
\end{array}\right.\right. \tag{0,25}\\
& \Rightarrow(x-y)+(y-z)=k+k^{\prime} \\
& \Rightarrow x-z=k+k^{\prime} \\
& \Rightarrow \exists k^{\prime \prime}=k+k^{\prime} \in \mathbb{N}: x-z=k^{\prime \prime} \tag{0,5}\\
& \Rightarrow x-z \in \mathbb{N} \\
& \Rightarrow x S z
\end{align*}
$$

So, S is transitive.
As S is reflexive, antisymmetric and transitive, then it is an order relation.
(4) Is this order total?

This order is partial, because
$\exists x=\frac{1}{2}, y=\frac{1}{3} \in \mathbb{R}$, such that $x-y=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} \notin \mathbb{N}$ and $x-y=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6} \notin \mathbb{N}$.
That is, $\exists x=\frac{1}{2}, y=\frac{1}{3} \in \mathbb{R}$, such that x and y are not comparable ($x \aleph y$ and $y \aleph x$).

