Abou Bakr Belkaïd University- Tlemcen
Faculty of Science
Department of Informatic

Worksheet $\mathrm{N}^{\circ} 3$
Number Sequences
LMD $1^{\text {st }}$ year 2023-2024

Exercise 1

1. Let be $\left(U_{n}\right)_{n \in \mathbb{N}^{*}}$ a number sequence, such that $U_{n}=\frac{n-2}{2 n}$.
a) By two different methods, sow that $\left(U_{n}\right)_{n \in \mathbb{N}^{*}}$ is bounded.
b) $\left(U_{n}\right)_{n \in \mathbb{N}^{*}}$ is that monotone?
2. Give the mathematical definition of a sequence which is not increasing.
3. Show that, the general term sequence $V_{n}=n \times(-1)^{n}, n \in \mathbb{N}$, is not increasing. Is a non-increasing sequence decreasing?

Exercise 2

1. Using the definition of limit, show that

$$
\lim _{n \rightarrow+\infty} \frac{(-1)^{n}}{n}=0, \quad \lim _{n \rightarrow+\infty} \frac{5 n-1}{2 n+1}=\frac{5}{2}, \quad \lim _{n \rightarrow+\infty} \sqrt[n]{5}=1, \quad \lim _{n \rightarrow+\infty}\left(\frac{3}{2}\right)^{n}=+\infty
$$

2. Find the limit of the following sequences when it exists

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty}\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n}}\right), \quad \lim _{n \rightarrow+\infty}(n-\sqrt{(n+1)(n-2)}), \quad \lim _{n \rightarrow+\infty}\left(\frac{3+\left(\pi \times 7^{n}\right)}{5-\left(e \times 7^{n}\right)}\right) \\
& \lim _{n \rightarrow+\infty}(\sqrt[3]{n+1}-\sqrt[3]{n}), \lim _{n \rightarrow+\infty}\left(\sum_{k=1}^{n} \frac{1}{k^{2}+k}\right), \lim _{n \rightarrow+\infty} \frac{n^{2} \sin \left(n^{3}+1\right)}{n^{3}+1}, \lim _{n \rightarrow+\infty}\left(\sum_{k=1}^{n} \frac{n}{n^{2}+k}\right)
\end{aligned}
$$

Exercice 3

Let be $\left(U_{n}\right)_{n \in \mathbb{N}}$ a number sequence, such that $U_{n+1}=\frac{U_{n}}{2}+\frac{3}{2 U_{n}}$ and $U_{0}=1$.

1. a) Show that, $\forall n \in \mathbb{N}, U_{n} \geq 0$,
b) if it should converge what would be its limit?
2. let's note, $l=\lim _{n \rightarrow+\infty} U_{n}$, Show that $\forall n \in \mathbb{N}, U_{n}-l>0$.

Deduce that $\left(U_{n}\right)$ is decreasing, what to conclude?

Exercice 4

In each case, study whether the sequences are adjacent.
If so, determine their common limit if possible

1. $U_{n}=3-\frac{1}{n^{2}}$ and $V_{n}=3+\frac{1}{n^{3}}, \forall n \in \mathbb{N}^{*}$.
2. $U_{n}=1-\frac{1}{n}$ and $V_{n}=1+\sin \left(\frac{1}{n}\right), \forall n \in \mathbb{N}^{*}$.
3. $U_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$ and $V_{n}=U_{n}+\frac{1}{n}, \forall n \in \mathbb{N}^{*}$.

Exercise 5

1. Let be $\left(U_{n}\right)_{n \in \mathbb{N}}$ a number sequence, such that $U_{n+1}=\frac{4}{5} U_{n}+\frac{1}{5}$ and $U_{0}=0$.
a) Show that $\forall n \in \mathbb{N}^{*},\left|U_{n+1}-U_{n}\right|=\left(\frac{4}{5}\right)^{n}\left|U_{1}-U_{0}\right|$.
b) Deduce that $\left(U_{n}\right)$ is a Cauchy one, then calculate the limit.
2. Show that $U_{n}=\sum_{k=2}^{n} \frac{1}{k^{2}}, n \in \mathbb{N} \backslash\{0,1\}$ is a Cauchy one, what can you deduce.
3. (Additional) Show that $U_{n}=\sum_{k=1}^{n} \frac{\cos k}{k!}$ is a Cauchy one, what can you deduce.
4. Show that $U_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is increasing and is not a Cauchy one, what can you deduce (Indication calculate $\left|U_{2 n}-U_{n}\right|$).

Exercise 6 (Additional)

1. Let be $\left(U_{n}\right)_{n \in \mathbb{N}}$ a number sequence, such that

$$
U_{n}=\frac{2 n+1}{3 n^{2}+1}+\frac{2 n+1}{3 n^{2}+2}+\ldots+\frac{2 n+1}{3 n^{2}+n}
$$

Show that U_{n} is convergent and determine its limit.
2. Let be $\left(U_{n}\right)_{n \in \mathbb{N}}$ a number sequence, such that

$$
U_{n}=\frac{1 \times 3 \times \ldots \times(2 n+1)}{3 \times 6 \times \ldots \times(3 n+3)}
$$

Show that U_{n} is convergent and determine its limit..

Exercise 7 (Additional)

We consider the sequences $\left(U_{n}\right)_{n \in \mathbb{N}^{*}}$ and $\left(V_{n}\right)_{n \in \mathbb{N}^{*}}$ a numbers sequences, such that

$$
U_{n}=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\ldots+\frac{1}{n^{3}} \quad \text { and } \quad V_{n}=U_{n}+\frac{1}{n^{2}}
$$

Show that these two sequences are convergent and have the same limit (which we will not try to calculate).

