Abou Bakr Belkaïd University- Tlemcen Faculty of Science Department of Informatic

Exercise 1

- Let be (U_n)_{n∈N*} a number sequence, such that U_n = n-2/2n.
 a) By two different methods, sow that (U_n)_{n∈N*} is bounded.
 b) (U_n)_{n∈N*} is that monotone?
- 2. Give the mathematical definition of a sequence which is not increasing.
- 3. Show that, the general term sequence $V_n = n \times (-1)^n$, $n \in \mathbb{N}$, is not increasing. Is a non-increasing sequence decreasing?

Exercise 2

1. Using the definition of limit, show that

$$\lim_{n \to +\infty} \frac{(-1)^n}{n} = 0, \qquad \lim_{n \to +\infty} \frac{5n-1}{2n+1} = \frac{5}{2}, \qquad \lim_{n \to +\infty} \sqrt[n]{5} = 1, \qquad \lim_{n \to +\infty} \left(\frac{3}{2}\right)^n = +\infty.$$

2. Find the limit of the following sequences when it exists

$$\lim_{n \to +\infty} (1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}), \qquad \lim_{n \to +\infty} (n - \sqrt{(n+1)(n-2)}), \qquad \lim_{n \to +\infty} (\frac{3 + (\pi \times 7^n)}{5 - (e \times 7^n)}).$$
$$\lim_{n \to +\infty} (\sqrt[3]{n+1} - \sqrt[3]{n}), \quad \lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k^2 + k}\right), \quad \lim_{n \to +\infty} \frac{n^2 \sin(n^3 + 1)}{n^3 + 1}, \quad \lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{n}{n^2 + k}\right)$$

Exercice 3

Let be $(U_n)_{n \in \mathbb{N}}$ a number sequence, such that $U_{n+1} = \frac{U_n}{2} + \frac{3}{2U_n}$ and $U_0 = 1$.

- 1. a) Show that, $\forall n \in \mathbb{N}, U_n \ge 0$, b) if it should converge what would be its limit?
- 2. let's note, $l = \lim_{n \to +\infty} U_n$, Show that $\forall n \in \mathbb{N}, U_n l > 0$. Deduce that (U_n) is decreasing, what to conclude?

Exercice 4

In each case, study whether the sequences are adjacent. If so, determine their common limit if possible

1.
$$U_n = 3 - \frac{1}{n^2}$$
 and $V_n = 3 + \frac{1}{n^3}, \forall n \in \mathbb{N}^*.$
2. $U_n = 1 - \frac{1}{n}$ and $V_n = 1 + \sin(\frac{1}{n}), \forall n \in \mathbb{N}^*.$
3. $U_n = \sum_{k=1}^n \frac{1}{k^2}$ and $V_n = U_n + \frac{1}{n}, \forall n \in \mathbb{N}^*.$

Exercise 5

- 1. Let be $(U_n)_{n \in \mathbb{N}}$ a number sequence, such that $U_{n+1} = \frac{4}{5}U_n + \frac{1}{5}$ and $U_0 = 0$. a) Show that $\forall n \in \mathbb{N}^*$, $|U_{n+1} - U_n| = (\frac{4}{5})^n |U_1 - U_0|$. b) Deduce that (U_n) is a Cauchy one, then calculate the limit.
- 2. Show that $U_n = \sum_{k=2}^n \frac{1}{k^2}$, $n \in \mathbb{N} \setminus \{0, 1\}$ is a Cauchy one, what can you deduce.
- 3. (Additional) Show that $U_n = \sum_{k=1}^n \frac{\cos k}{k!}$ is a Cauchy one, what can you deduce.
- 4. Show that $U_n = \sum_{k=1}^n \frac{1}{k}$ is increasing and is not a Cauchy one, what can you deduce (Indication calculate $|U_{2n} U_n|$).

Exercise 6 (Additional)

1. Let be $(U_n)_{n\in\mathbb{N}}$ a number sequence, such that

$$U_n = \frac{2n+1}{3n^2+1} + \frac{2n+1}{3n^2+2} + \dots + \frac{2n+1}{3n^2+n}$$

Show that U_n is convergent and determine its limit.

2. Let be $(U_n)_{n \in \mathbb{N}}$ a number sequence, such that

$$U_n = \frac{1 \times 3 \times \ldots \times (2n+1)}{3 \times 6 \times \ldots \times (3n+3)}.$$

Show that U_n is convergent and determine its limit.

Exercise 7 (Additional)

We consider the sequences $(U_n)_{n \in \mathbb{N}^*}$ and $(V_n)_{n \in \mathbb{N}^*}$ a numbers sequences, such that

$$U_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}$$
 and $V_n = U_n + \frac{1}{n^2}$

Show that these two sequences are convergent and have the same limit (which we will not try to calculate).