Abou Bakr Belkaïd University-University of Tlemcen Faculty of Science
Department of Informatic
Worksheet $\mathrm{N}^{\circ} 2$
The complex numbers
LMD $1^{\text {st }}$ year 2023-2024

Exercise 1

1. Write in the "algebraic" form $(a+i b)$ the following complex numbers

$$
\frac{3+6 i}{3-4 i}, \quad\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{6}, \quad \frac{-2}{1-i \sqrt{3}}, \quad \frac{1}{(1+2 i)(3-i)} \quad \quad \quad \text { Optional). }
$$

2. Write in the polar $(r(\cos \theta+i \sin \theta))$ and the exponential polar form $\left(r e^{i \theta}\right)$, the following complex numbers and there conjugate

$$
-2, \quad 3+3 i, \quad-1-i \sqrt{3}, \quad \frac{1+\sqrt{3} i}{\sqrt{3}-i} \quad(\text { Optional }) .
$$

3. Prove that

$$
\begin{gathered}
\left(\cos \left(\frac{\pi}{7}\right)+i \sin \left(\frac{\pi}{7}\right)\right)\left(\frac{1-i \sqrt{3}}{2}\right)(1+i)=\sqrt{2}\left(\cos \left(\frac{5 \pi}{84}\right)+i \sin \left(\frac{5 \pi}{84}\right)\right) \\
(1-i)\left(\cos \left(\frac{\pi}{5}\right)+i \sin \left(\frac{\pi}{5}\right)\right)(\sqrt{3}-i)=2 \sqrt{2}\left(\cos \left(\frac{13 \pi}{60}\right)-i \sin \left(\frac{13 \pi}{60}\right)\right) \quad(\text { Optional })
\end{gathered}
$$

Exercise 2

Let $a=\sqrt{3}+i$ and $b=\sqrt{3}-1+i(\sqrt{3}+1)$ two complex numbers,

1. Check that $b=(1+i) a$.
2. Deduce that $|b|=2 \sqrt{2}$ and $\arg (b)=\frac{5 \pi}{12}[2 \pi]$.
3. Deduce from the above that: $\quad \cos \left(\frac{5 \pi}{12}\right)=\frac{\sqrt{6}-\sqrt{2}}{4}$.

Exercise 3

1. Find the squar roots for a complex number

$$
-1, \quad i, \quad 3-4 i, \quad \frac{\sqrt{3}+i}{2} \quad \text { (Optional) }
$$

2. Find $z \in \mathbb{C}$ such that

$$
z^{2}+z+1=0, \quad z^{3}+8=0, \quad z^{4}+i=0, \quad z^{5}=\bar{z} \quad(\text { Optional })
$$

Exercise 4

Let ' f ' be a function defined from \mathbb{C} to \mathbb{C}, by

$$
\forall z \in \mathbb{C}, \quad z \neq-i, \quad f(z)=\frac{1-z}{1-i z}
$$

1. Find $z \in \mathbb{C}$ such that $f(z) \in \mathbb{R}$
2. Find $z \in \mathbb{C}$ such that $f(z) \in i \mathbb{R}$.

Exercise 5

Determine in each case, the set of points $M(x, y)$, with affix $z=x+i y$ such that:

1. $|z-(2-i)|=\sqrt{2}$.
2. $|z-1-2 i|=|z+2-i|$.
3. $|\bar{z}-2 i|=|z+2|$. (Optional).
