Abou Bakr Belkaïd University-University of Tlemcen Faculty of Science Department of Informatic

 $\begin{array}{c} {\rm Worksheet} \ {\rm N}^{\circ}{\rm 1} \\ {\rm The \ real \ numbers} \\ {\rm LMD} \ {\rm 1}^{\rm st} \ {\rm year} \ 2023\text{-}2024 \end{array}$

Exercise 1

- 1. Let $r_1 = 0,2023, r_2 = 0,20232023...2023$ and $r_3 = 0,20232023...$ Convert the decimal numbers r_1, r_2 and r_3 to fractions.
- 2. Let $a \in \mathbb{R}$, Show that, if a^2 is factor of 2, then a is also factor of 2.
- 3. Show that, the numbers $\sqrt{2}$, $\sqrt{3}$, $\sqrt{2} + \sqrt{3}$ are irrationals numbers.
- 4. Show that, if n is prime number then \sqrt{n} is irrational number.
- 5. Show that $\forall (p,q) \in \mathbb{N}, p \neq q : (\sqrt{p} + \sqrt{q}) \notin \mathbb{Q} \Rightarrow (\sqrt{p} \sqrt{q}) \notin \mathbb{Q}.$

(optional)

1. Let $n \in \mathbb{N}^*$, prove that, $\sqrt{\frac{n}{n+2}} \notin \mathbb{Q}$.

- 2. Let $n \in \mathbb{N}$, if n is not a perfect square then $\sqrt{n} \notin \mathbb{Q}$.
- 3. Let $n, m \in \mathbb{N}$, which are not perfect squares, then $\sqrt{n} \neq \mathbb{Q}$.
- 4. Show that, if $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$ then $x + y \notin \mathbb{Q}$.
- 5. Show that, if $x \in \mathbb{Q}^*$ and $y \notin \mathbb{Q}$ then $x \times y \notin \mathbb{Q}$.

Exercise 2

- 1. Resolve in \mathbb{R} : |x-2| + |x-3| = 3, and $|2x^2 1| \le |x+1|$
- 2. let x and y two real numbers, show that
 - (a) $|x| + |y| \le |x+y| + |x-y|$.
 - (b) $1 + |xy 1| \le (1 + |x 1|)(1 + |y 1|).$
 - (c) $||x| |y|| \le |x y| \le |x| + |y|$. (optional)
 - (d) For all $x \in \mathbb{R}$, we put $f(x) = \frac{|x|}{1+|x|}$. Show that, $\forall x, y \in \mathbb{R}$, $f(x+y) \leq f(x) + f(y)$. (optional)

Exercise 3

1. Resolve in $\mathbb R$

$$E(\frac{2x+1}{3}) - 2 = 0, \quad E(x+a) = 2, a \in \mathbb{R}. \quad 3E(x^2 + 2x) - 4 = 0,$$

$$E(x) \ge 1, \quad -1 \le E(3x) \le 1, \quad E(x) + |x-1| = x,$$

- 2. Show that $\forall n \in \mathbb{N}^*$, we have E(x+n) = E(x) + n and $E(\frac{1}{n}E(nx)) = E(x)$.
- 3. Let $x, y \in \mathbb{R}$, Show that $E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1$.
- 4. Prove that, $\forall p \in \mathbb{Z}$, E(p) + E(-p) = 0. (optional)
- 5. Prove that, $\forall p \in \mathbb{R} \setminus \mathbb{Z}$, E(p) + E(-p) + 1 = 0. (optional).

Exercise 4

- 1. Give the definition of interval $I \subset \mathbb{R}$.
- 2. Let A, B, C the subsets of \mathbb{R} , such that $A = \{x \in \mathbb{R}, x^2 < 1\}, B = \{x \in \mathbb{R}, (x-3)(x+2) \ge 0\} \cap [-4, 4], C = \{x \in \mathbb{R}^*, \frac{1}{x} > 2\}.$
 - (a) Put these sets in the form of an interval of \mathbb{R} , or an interval union.
 - (b) Why is the set B not an interval?
 - (c) Find the set of all upper bound, lower bound, supremum, infimum, maximum and minimum if there exists.

Exercise 5

- 1. Find the sets of all upper bound, lower bound, supremum, infimum, maximum and minimum if there exists of: $A = \left\{ \frac{x+1}{x+2}, \ x \in \mathbb{R}, x \leq -3 \right\}, \quad B = \left\{ \frac{n+3}{n+2}, \ n \in \mathbb{N} \right\}, \quad C = \left\{ (-1)^n + \frac{1}{n^2}, \ n \in \mathbb{N}^* \right\}.$ $D = \left\{ 2 - \frac{8}{n+4}, \ n \in \mathbb{N} \right\}, \quad E = \left\{ \frac{(-1)^n}{n+1} + \frac{(-1)^n+2}{3}, \ n \in \mathbb{N} \right\}.$ (D and E optional).
- 2. For using the caracterization of supremum and infimum, prove that

$$\max([0,2]) = \sup([0,2]) = 2, \text{ inf}([0,2]) = 0$$

 $\sup B = \frac{3}{2}, \text{ inf } B = 1$

3. Same question for set D.(optional)

Exercise 6

Let A and B be nonempty subsets of real numbers, prove that

- 1. If $(A \subset B) \Rightarrow (\sup A \leq \sup B)$ et $(\inf B \leq \inf A)$.
- 2. $\sup(A \cup B) = \max\{\sup A, \sup B\}.$
- 3. $\inf(A \cup B) = \min\{\inf A, \inf B\}$. (optional)