Abou Bakr Belkaïd University-University of Tlemcen Faculty of Science Department of Informatic

Worksheet $\mathrm{N}^{\circ} 1$
The real numbers
LMD $1^{\text {st }}$ year 2023-2024

Exercise 1

1. Let $r_{1}=0,2023, r_{2}=0,20232023 \ldots 2023$ and $r_{3}=0,20232023 \ldots$ Convert the decimal numbers r_{1}, r_{2} and r_{3} to fractions.
2. Let $a \in \mathbb{R}$, Show that, if a^{2} is factor of 2 , then a is also factor of 2 .
3. Show that, the numbers $\sqrt{2}, \sqrt{3}, \sqrt{2}+\sqrt{3}$ are irrationals numbers.
4. Show that, if n is prime number then \sqrt{n} is irrational number.
5. Show that $\forall(p, q) \in \mathbb{N}, p \neq q:(\sqrt{p}+\sqrt{q}) \notin \mathbb{Q} \Rightarrow(\sqrt{p}-\sqrt{q}) \notin \mathbb{Q}$.

(optional)

1. Let $n \in \mathbb{N}^{*}$, prove that, $\sqrt{\frac{n}{n+2}} \notin \mathbb{Q}$.
2. Let $n \in \mathbb{N}$, if n is not a perfect square then $\sqrt{n} \notin \mathbb{Q}$.
3. Let $n, m \in \mathbb{N}$, which are not perfect squares, then $\sqrt{n}+\sqrt{m} \notin \mathbb{Q}$.
4. Show that, if $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$ then $x+y \notin \mathbb{Q}$.
5. Show that, if $x \in \mathbb{Q}^{*}$ and $y \notin \mathbb{Q}$ then $x \times y \notin \mathbb{Q}$.

Exercise 2

1. Resolve in $\mathbb{R}:|x-2|+|x-3|=3$, and $\left|2 x^{2}-1\right| \leq|x+1|$
2. let x and y two real numbers, show that
(a) $\quad|x|+|y| \leq|x+y|+|x-y|$.
(b) $\quad 1+|x y-1| \leq(1+|x-1|)(1+|y-1|)$.
(c) $\quad||x|-|y|| \leq|x-y| \leq|x|+|y|$. (optional)
(d) For all $x \in \mathbb{R}$, we put $f(x)=\frac{|x|}{1+|x|}$.

Show that, $\forall x, y \in \mathbb{R}, f(x+y) \leq f(x)+f(y)$. (optional)

Exercise 3

1. Resolve in \mathbb{R}

$$
\begin{aligned}
& E\left(\frac{2 x+1}{3}\right)-2=0, \quad E(x+a)=2, a \in \mathbb{R} . \quad 3 E\left(x^{2}+2 x\right)-4=0 \\
& E(x) \geq 1, \quad-1 \leq E(3 x) \leq 1, \quad E(x)+|x-1|=x
\end{aligned}
$$

2. Show that $\forall n \in \mathbb{N}^{*}$, we have $E(x+n)=E(x)+n$ and $E\left(\frac{1}{n} E(n x)\right)=E(x)$.
3. Let $x, y \in \mathbb{R}$, Show that $E(x)+E(y) \leq E(x+y) \leq E(x)+E(y)+1$.
4. Prove that, $\forall p \in \mathbb{Z}, E(p)+E(-p)=0$. (optional)
5. Prove that, $\forall p \in \mathbb{R} \backslash \mathbb{Z}, E(p)+E(-p)+1=0$. (optional).

Exercise 4

1. Give the definition of interval $I \subset \mathbb{R}$.
2. Let A, B, C the subsets of \mathbb{R}, such that $A=\left\{x \in \mathbb{R}, x^{2}<1\right\}, B=\{x \in \mathbb{R},(x-3)(x+2) \geq 0\} \cap[-4,4]$, $C=\left\{x \in \mathbb{R}^{*}, \frac{1}{x}>2\right\}$.
(a) Put these sets in the form of an interval of \mathbb{R}, or an interval union.
(b) Why is the set B not an interval?
(c) Find the set of all upper bound, lower bound, supremum, infimum, maximum and minimum if there exists.

Exercise 5

1. Find the sets of all upper bound, lower bound, supremum, infimum, maximum and minimum if there exists of: $A=\left\{\frac{x+1}{x+2}, x \in \mathbb{R}, x \leq-3\right\}, \quad B=\left\{\frac{n+3}{n+2}, n \in \mathbb{N}\right\}, \quad C=\left\{(-1)^{n}+\frac{1}{n^{2}}, n \in \mathbb{N}^{*}\right\}$. $D=\left\{2-\frac{8}{n+4}, n \in \mathbb{N}\right\}, \quad E=\left\{\frac{(-1)^{n}}{n+1}+\frac{(-1)^{n}+2}{3}, n \in \mathbb{N}\right\}$. (D and E optional).
2. For using the caracterization of supremum and infimum, prove that

$$
\begin{gathered}
\max (] 0,2])=\sup ([0,2])=2, \quad \inf (] 0,2])=0 \\
\sup B=\frac{3}{2}, \quad \inf B=1
\end{gathered}
$$

3. Same question for set D.(optional)

Exercise 6

Let A and B be nonempty subsets of real numbers, prove that

1. If $(A \subset B) \Rightarrow(\sup A \leq \sup B)$ et $(\inf B \leq \inf A)$.
2. $\sup (A \cup B)=\max \{\sup A, \sup B\}$.
3. $\inf (A \cup B)=\min \{\inf A, \inf B\}$. (optional)
