Université Abou Bekr Belkaid - Tlemcen Faculté des sciences

Département de mathématiques

Année universitaire: 2022 - 2023

Module: Algèbre 1 L1 Math

T.D N°2: Ensembles et applications

Exercice 1

(1) Ecrire en extension les ensembles suivants:

$$A = \left\{ n \in \mathbb{N} \setminus \frac{\sqrt{2}}{2} < n < \sqrt{2}\pi \right\} \text{ et } B = \left\{ x \in \mathbb{R} \setminus \exists (n,p) \in \mathbb{N}^2 : x = \frac{n}{p} \text{ et } 1 \leq p \leq 2n \leq 5 \right\}.$$

(2) Ecrire en compréhension les ensembles suivants:

$$C = \{2,3,5,7,11,17,19,23,29\}$$
 et $D = \{1,2,3,4,6,8,12,24\}$.

Exercice 2

(1) Considérons les deux ensembles A et B définis par:

$$A = \{(x,y) \in \mathbb{R}^2 \setminus 2x - y = 1\}$$
 et $B = \{(t+1,2t+1) \setminus t \in \mathbb{R}\}$. Montrer que $A = B$

- (2) Soit $E = \left\{ x \in \mathbb{Z} \setminus \left| x \frac{1}{2} \right| < 1 \right\}$. Déterminer P(E) et P(P(E)).
- (3) Pour $n \in \mathbb{N}^*$, posons $A_n = \left[\frac{1}{n+1}, \frac{1}{n} \right]$.
- (i) Montrer que la famille des ensembles $\{A_n, n \in \mathbb{N}^* \}$ est un recouvrement de l'intervalle]0,1].
- (ii) En déduire que $\{A_n, n \in \mathbb{N}^*\}$ est une partition de]0,1].

Exercice 3

Soient A, B, et C des parties d'un ensemble E.

- (1) Montrer que : $\forall A, B, C \in P(E)$, on a : $A \cap B = A \cap C \ et A \cup B = A \cup C \Rightarrow B = C$
- (2) En déduire que si : $A \cup B = E$ et $A \cap B = \emptyset$, alors A et B sont complémentaires dans E.
- (3) Démontrer que: $A \cap B = A \cup B \Rightarrow A = B$, en utilisant : (i) Raisonnement directe. (ii) La contraposée.

Exercice 4

Considérons les deux ensembles E et F définis par :

 $E = \left\{ n \in \mathbb{N} \mid n \text{ divise 4 ou } n \text{ divise 6} \right\} \text{ et } F = \left\{ n \in \mathbb{N} \mid n \text{ impair et } n < 9 \right\} \cup \{0, 10\}.$

Soit $f: E \to F$ une application définie par son graphe $G = \{(1,3),(2,5),(3,5),(4,0),(6,7)\}.$

- (1) Vérifier que f est bien une application. (2) f est-elle injective? surjective?
- (3) Déterminer $f(4), f(\{4\}), f(\{n \in \mathbb{N} \mid n \text{ divise } 4\})$ et f(E).
- (4) Déterminer $f^{-1}(0), f^{-1}(\{0\}), f^{-1}(\{5\}), f^{-1}(\{n \in \mathbb{N} \mid n \text{ impair et } n < 9\})$ et $f^{-1}(F)$.

Exercice 5

Soient $f: E \to F$ une application et A et B deux parties de E.

- (1) Montrer que: $f(A \cap B) \subset f(A) \cap f(B)$. (2) Montrer à l'aide d'un contre exemple que: $f(A \cap B) \neq f(A) \cap f(B)$.
 - (3) Trouver une condition sur f pour que : $f(A \cap B) = f(A) \cap f(B)$.

Exercice 6

- (I) Soit $f: \mathbb{R} \to \mathbb{R}$ une application définie par: $f(x) = \frac{1}{\sqrt{1+x^2}}$.
- (1) Déterminer $f(x \in \mathbb{R} \setminus |x| = 1)$ et $f^{-1}(y \in \mathbb{R} \setminus y^3 = 8)$. (2) f est-elle injective? surjective? bijective?
- (3) Déterminer $f\left(\left[1,\sqrt{3}\right]\right), f\left(\left]-\sqrt{3},-1\right]\right), f\left(\left[-1,2\sqrt{2}\right[\right),f(\mathbb{R}^+),f^{-1}(\left]0,1\right]\right)$ et $f^{-1}\left(\left[\frac{1}{2},1\right]\right)$.

 $(II) \ \operatorname{Soit} \ g = f \backslash_{\mathbb{R}^+} : \ \mathbb{R}^+ \to J \ \text{où} \ J = f(\mathbb{R}^+). \ \Big(\ g \ \text{est la restriction de} \ f \ \text{sur} \ \mathbb{R}^+ \Big).$

(1) Montrer que g est bijective et déterminer g^{-1} . (2) Déterminer $g^{-1}\left(\frac{1}{2}\right)$ par deux méthodes.

(3) Calculer $g \circ g^{-1}(y)$ pour $y \in J$ et $g^{-1} \circ g(x)$ pour $x \in \mathbb{R}^+$.

EXERCICES SUPPLEMENTAIRES

Exercice 1

Soient $A =]-\infty, 3], B = [-2, 7[$ et $C =]-5, +\infty[$.

Déterminer : $A \cup B$, $B \cap C$, $C \setminus A$, $C_{\mathbb{R}}(B)$ et $A \triangle B$.

Exercice 2

Soit $A = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1 \}$.

(1) Les couples (1,0) et (0,1) appartiennent-ils à A?

(2) Montrer que A ne peut être le produit cartésien de deux parties de $\mathbb R$.

Indication: Pa l'absurde et remaquer que $(1,1) \notin A$.

Exercice 3

Soient $A,B,\,$ et $C\,$ des parties d'un ensemble $E.\,$ Montrer que :

(1) $(A \backslash B) \backslash C = A \backslash (B \cup C)$

 $(2) C_E(A \cap B) = C_E(A) \cup C_E(B)$

(3) $A \triangle B = A \cap B \iff A = B = \emptyset$

Exercice 4

Considérons les deux parties de \mathbb{R}^2 , E = [0,1] et F = [0,2]

(1) Dessiner $E \times F$ et $E \times E$.

 $(2) \ \text{Soient} \ \ f \colon E \to F \ \ \text{et} \ \ g \ \colon F \to E \qquad \text{deux applications}.$

$$x \mapsto 2 - x$$
 $x \mapsto (x - 1)^2$

(3) Préciser $g \circ f$ et $f \circ g$. A-t-on $g \circ f = f \circ g$ et $g \circ f = g$?

(4) Déterminer $f^{-1}(\{0\})$ et $g^{-1}\left(\left[0,\frac{1}{2}\right]\right)$.

(5) Montrer que: $g \circ f$ et bijective et préciser $(g \circ f)^{-1}$

Exercice 5

Soit $f: \mathbb{R} \to \mathbb{R}$ une application définie par: $f(x) = \frac{2x}{1+x^2}$.

(1) Déterminer f(2) et $f(\frac{1}{2})$. f est-elle injective?

(2) Résoudre dans $\mathbb{R}: f(x) = 2$. f est-elle surjective? Montrer que $f(\mathbb{R}) = [-1, 1]$.

(3) Montrer que l'application g définie sur [-1,1] dans [-1,1] par: f(x)=g(x) est bijective et déterminer son inverse g^{-1} .

Exercice 6

Montrer que l'application $f: \mathbb{R} \to]-1, 1[$ définie par: $f(x) = \frac{x}{1+|x|}$ est bijective et déterminer f^{-1} .

Exercice 7

Soient E un ensemble. $f\!:\!P(E)\to\mathbb{R}$ une application telle que :

 $\forall A \text{ et } B \text{ deux sous ensembles disjoints de } E \text{ on a : } f(A \cup B) = f(A) + f(B)$

(1) Montrer que : $f(\emptyset) = 0$.

(2) Montrer que : $\forall A, B \in P(E) : f(A \cup B) + f(A \cap B) = f(A) + f(B)$

Indication : $A \cup B = A \cup (B \setminus A)$ et $B = (A \cap B) \cup (B \setminus A)$ et remarquer que A et $(B \setminus A)$ sont disjoints, de même pour $(A \cap B)$ et $(B \setminus A)$ et utiliser la définition de f.