Examen final de Géométrie 07 Juin 2022- Durée 1h 30mn

Exercice 1 (5 pts)

Calculer la courbure de la courbe paramétrée $\alpha:]0,\pi[\longrightarrow \mathbb{R}^2$ définie en coordonnées cartésiennes par :

$$\alpha(t) = \left(R\left(\ln\left(\tan\left(\frac{t}{2}\right)\right) + \cos(t)\right), R\sin(t)\right)$$

où R est un réel strictement positif donné.

Exercice 2 (7 pts)

Soit S l'ensemble des points de \mathbb{R}^3 dont les coordonnées (x,y,z) vérifient :

$$\begin{cases} (x,z) \neq (0,0) \\ xy - z^3 = 0 \end{cases}$$

- 1. Donner un paramétrage de S.
- 2. Déterminer une base de l'espace tangent à la surface S en A(1,8,2).
- 3. Calculer un vecteur normal à la surface S en A(1,8,2).
- 4. Le vecteur V=(7,-18,3) appartient-il au plan tangent à S en A(1,8,2)?
- 5. Calculer, en un point p de la surface S, la première forme fondamentale.

Exercice 3 (8 pts)

Soit H le paraboloïde hyperbolique paramétré par $f:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ définie par :

$$f(u,v) = (a(u+v), b(u-v), uv)$$

où a et b sont des réels non nuls.

- 1. Déterminer les points réguliers de H.
- 2. Déterminer une équation cartésienne du plan tangent en un point régulier p de H.
- 3. On pose a=b=1, calculer la courbure de Gauss de la surface H en un point régulier p.

Épreuve finale de Géométrie 07 Mai 2022 Le Corrigé

Exercice 1 (5 pts)

On donne la courbe plane paramétrée par

$$\alpha(t) = \left(R\left(\ln\left(\tan\left(\frac{t}{2}\right)\right) + \cos(t)\right), R\sin(t)\right)$$

avec $t \in]0, \pi[$.

Calculer la courbure de α .

 α est bien de classe C^2 sur $]0,\pi[$ dont la courbure est donnée par

$$\kappa(t) = \frac{\left| \det(\alpha'(t), \alpha''(t)) \right|}{\left\| \alpha'(t) \right\|^3}$$

or
$$\alpha'(t) = R\left(\frac{1}{\sin(t)} - \sin(t), \cos(t)\right)$$
 (1pt) et $\alpha''(t) = R\left(-\frac{\cos(t)}{\sin^2(t)} - \cos(t), -\sin(t)\right)$ (1pt)

Ce qui donne

$$\det(\alpha'(t), \alpha''(t)) = R^2 \left(\frac{\cos(t)}{\sin(t)}\right)^2 \quad \text{(1pt)}$$

d'autre part $\|\alpha'(t)\|^3 = R^3 \frac{|\cos(t)|^3}{\sin(t)}$ (comme $t \in]0,\pi]$, alors $\sin t > 0$) (1pt). Par conséquent

$$\kappa(t) = \frac{1}{R} |\tan(t)|$$
 (1pt)

Exercice 2 (7 pts)

Soit S l'ensemble des points de \mathbb{R}^3 dont les coordonnées (x,y,z) vérifient :

$$\begin{cases} (x,z) \neq (0,0) \\ xy - z^3 = 0 \end{cases}$$

1. Donner un paramétrage de S. (1pt)

Considérons la nappe paramétrée $\varphi: \mathbb{R}^* \times \mathbb{R} \longrightarrow \mathbb{R}^3$ définie par

$$\varphi(u,v) = (u, \frac{v^3}{u}, v)$$

Le support de φ est contenu dans S . Réciproquement, soit M un point de coordonnées (x,y,z) de S. Comme $x \neq 0$, $M = \varphi(x,z)$ et le support de φ est exactement S.

2. Déterminer une base de l'espace tangent à la surface S en A(1,8,2). Calculons les dérivées partielles de φ .

$$\varphi_u = \left(1, -\frac{v^3}{u^2}, 0\right)$$
 (0.5pt) et $\varphi_v = \left(0, \frac{3v^2}{u}, 1\right)$ (0.5pt)

Le point A est obtenu au point de paramètre (u,v)=(1,2). Donc $\varphi_u(1,2)=(1,-8,0)$ et $\varphi_v(1,2)=(0,12,1)$. Ces deux vecteurs forment une base du plan tangent T_AS à S au point de paramètre (u,v)=(1,2) (1pt).

3. Calculer un vecteur normal à la surface S en A(1,8,2).

On a
$$N(u,v) = \varphi_u \wedge \varphi_v = \left(-\frac{v^3}{u^2}, -1, 3\frac{v^2}{u}\right)$$
 (1pt). D'où $N(1,2) = (-8, -1, 12)$ (0.5pt).

- 4. Le vecteur V = (7, -18, 3) appartient-il au plan tangent à S en A(1, 8, 2) ? On a $N.V = -56 + 18 + 36 = -2 \neq 0$. Donc $V \notin T_AS$ (0.5pt).
- 5. Calculer, en un point p de la surface S, la première forme fondamentale. Soit $p = \varphi(u, v) \in S$, le plan tangent au point p est engendré par $\{\varphi_u, \varphi_v\}$ où

$$\varphi_u = \left(1, -\frac{v^3}{u^2}, 0\right)$$
 et $\varphi_v = \left(0, \frac{3v^2}{u}, 1\right)$

La première forme fondamentale I_p de S est définie par la matrice symétrique $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$.

On calcule $E = \varphi_u \cdot \varphi_u = 1 + \frac{v^6}{v^4}$, $F = \varphi_u \cdot \varphi_v = -3\frac{v^5}{v^3}$ et $G = \varphi_v \cdot \varphi_v = 1 + 9\frac{v^4}{v^2}$ (1.5pt). Donc

$$I_p = \begin{pmatrix} 1 + \frac{v^6}{u_4^4} & -3\frac{v^5}{u^3} \\ -3\frac{v^5}{u^3} & 1 + 9\frac{v^4}{u^2} \end{pmatrix}$$
 (0.5pt)

Exercice 3 (8 pts)

Soit H le paraboloïde hyperbolique paramétré par $f:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ définie par :

$$f(u,v) = (a(u+v), b(u-v), uv)$$

où a et b sont des réels non nuls.

1. Déterminer les points réguliers de H. Calculons les dérivées partielles de f

$$f_u = (a, b, v)$$
 et $f_v = (a, -b, u)$ (0.5pt)

ainsi que leurs produit vectoriel $f_u \wedge f_v = (b(u+v), -a(u-v), -2ab)$ (0.5pt). Comme $ab \neq 0$, ce vecteur $f_u \wedge f_v$ ne peut pas s'annuler. Tout les points de H sont, donc, réguliers.

2. Déterminer une équation cartésienne du plan tangent en un point régulier p de H. Le plan tangent à H au point p est engendré par les vecteurs f_u et f_v , c'est l'ensemble des points m=(x,y,z) de \mathbb{R}^3 tels que le vecteur \overrightarrow{pm} soit colinéaire à f_u et f_v . C-à-d, ils existent deux réels α et β tels que $\overrightarrow{pm} = \alpha f_u + \beta f_v$ (0.5pt). Ce qui donne

(0.75pt)
$$\begin{cases} x - a(u+v) = (\alpha + \beta)a & ...(1) \\ y - b(u-v) = (\alpha - \beta)b & ...(2) \\ z - uv = \alpha u + \beta v & ...(3) \end{cases}$$

La première équation nous donne ; $\beta = \frac{x}{a} - u - v - \alpha$. On remplace dans la deuxième, on obtient $\alpha = \frac{x}{2a} + \frac{y}{2b} - u. \text{ En suite (2) implique; } \beta = \frac{x}{2a} - \frac{y}{2b} - v.$ Finalement, le report de α et β dans (3) nous donne l'équation cartésienne du plan tangent en p:

$$\frac{1}{2a}(u+v)x - \frac{1}{2b}(u-v)y - z - uv = 0$$
 (0.75pt)

3. On pose a=b=1, calculer la courbure de Gauss de la surface H en un point régulier p. La première forme fondamentale I_p de H est définie par la matrice symétrique $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$. On a $f_u=(1,1,v)$ et $f_v=(1,-1,u)$. D'où $E=2+v^2$, F=uv et $G=2+u^2$. Donc

$$I_p = \left(egin{array}{cc} 2+v^2 & uv \\ uv & 2+u^2 \end{array}
ight)$$
 (0.75pt)

de déterminant : $\det I_p = 4 + 2u^2 + 2v^2$. Le vecteur normal unitaire est donné par

$$N_p(u, v) = \frac{f_u(u, v) \land f_v(u, v)}{\|f_u(u, v) \land f_v(u, v)\|}$$

En reprenant les formules ci-dessus, on a : $f_u \wedge f_v = (u+v, -u+v, -2)$, de norme

$$||f_u \wedge f_v|| = \sqrt{4 + 2u^2 + 2v^2}$$

donc

$$N_p = \frac{1}{\sqrt{4 + 2u^2 + 2v^2}} (u + v, v - u, -2)$$
 (0.5pt)

Calculons en suite :

$$f_{uu} = (0,0,0), f_{uv} = (0,0,1)$$
 et $f_{vv} = (0,0,0)$ (0.75pt)

La deuxième forme fondamentale :

$$l = f_{uu}.N_p = 0, \quad m = f_{uv}.N_p = \frac{-2}{\sqrt{4 + 2u^2 + 2v^2}}, \quad q = f_{vv}.N_p = 0.$$
 (0.75pt)

d'où

$$II_p = \begin{pmatrix} 0 & \frac{-2}{\sqrt{4 + 2u^2 + 2v^2}} \\ \frac{-2}{\sqrt{4 + 2u^2 + 2v^2}} & 0 \end{pmatrix}$$

La matrice associée à l'opérateur de forme est $S_p = I_p^{-1} I I_p$. Ce qui donne

$$S_p = \frac{1}{4 + 2u^2 + 2v^2} \begin{pmatrix} 2 + u^2 & -uv \\ -uv & 2 + v^2 \end{pmatrix} \frac{1}{\sqrt{4 + 2u^2 + 2v^2}} \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$$
 (0.5pt)

Par suite

$$S_p = \frac{1}{(4+2u^2+2v^2)^{\frac{3}{2}}} \begin{pmatrix} 2uv & -4-2u^2 \\ -4-2v^2 & 2uv \end{pmatrix}$$
 (0.5pt)

La courbure de Gauss est donnée par

$$K = \det S_p = \frac{4u^2v^2 - (4 + 2u^2)(4 + 2v^2)}{(4 + 2u^2 + 2v^2)^3}$$
 (0.5pt)

Ou encore

$$K = \frac{-1}{(2+u^2+v^2)^2}$$
 (0.25pt)