Université de Tlemcen Faculté des Sciences Département de Mathématiques 1^{ère} Année LMD-MI

Contrôle Continu - Statistique descriptive- (Jeudi 24Mars 2022)

Exercice 1 (Questions de cours) (6 pts)

- I) Soit X, un caractère discret : $X \Omega \rightarrow \{x_1, \dots, x_n\}$. (avec $x_1 < x_2 < \dots < x_n$)
- 1) donner la définition de f_i , fréquence partielle de la modalité x_i .

(1 pt) (1 pt + 1 pt)

- 2) Donner et interpréter la valeur de $F_X(x_i)$, où F_X est la fonction de répartition de X.
- II) Soit Y un caractère continu définie sur une population Ω . On note N l'effectif total.
- N= 50, $x_{min} = 140$ et $x_{Max} = 171$.
- a) Calculer l'étendue e du caractère Y.

(0.5 pt)

- b) En utilisant la méthode de YULE, Déterminer le nombre (m) de classes et calculer h la longueur d'une classe (0.5 pt + 1 pt)
- c) Déterminer les classes de valeurs (de même longueur h) du caractère Y.

(1pt)

Exercice 2 (5.5 pts)

Le médecin de la Faculté des sciences a relevé le nombre X d'étudiants qui se sont présentés par jour à son service pendant une période de 15 jours.

Les valeurs prises par X sont données par la série statistique suivante:

4,0,4,1,2,5,4,2,3,4,3,4,4,2,3.

- 1) Déterminer la population Ω , l'individu ω et C l'ensemble des modalités (0.5 pt + 0.5 pt + 0.5 pt)
- 2) Calculer directement à partir de la série statistique :
- **a)** Le mode M_0 , **b)** la moyenne \bar{x} , **c)** La variance Var(X), **d)** la médiane M_e .

(1 pt)

(1 pt)

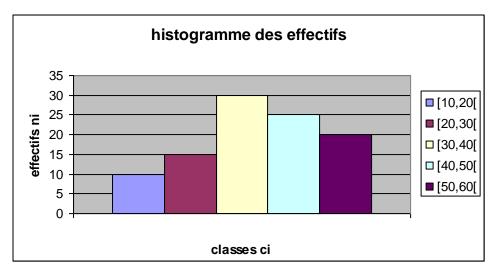
(1 pt)

(1 pt)

Exercice 3(8.5 pts)

Soit X le caractère discret égal au nombre d'enfants parfamille d'un quartier de la ville de Tlemcen. Les valeurs prises par X avec leurs effectifs partiels respectifs sont données par :

Xi	1	2	3	4	5	6	7					
ni	201	238	137	<u>142</u>	55	15	6					
1)	Interp	réter l	le nom	ibre 14	42							(0.5pt)
2)	Dresse	r le ta	ıbleau	suivai	nt:							(2 pts)
Xi		n_i			f_{i}		N	N_i	F_{i}	$f_i \ x_i$	$f_i(x_i)^2$	
3)	Calcule	er : i) l	la moy	enne	\bar{x}	(0.5	pt)) ; ii) l'éca	art type σ_X .			(1.5 pt)
4) '	Tracer	le dia	ıgramı	me en	bâtoı	ns de	f_i		(0.5 pt)			
5)	Détern	niner	la fond	ction d	le rép	artiti	on	ı Fx				(1 pt)
6) '	Tracer	la cou	urbe c	umula	tive (des fr	éqι	uences de X	ζ.			(0.5 pt)
7)	Calcul	er et i	interp	réter :	a) l	$F_X(3,6)$	6 5)) (0.	5 pt +0.5 pt)	; b) 1- F _X	(5)	0.5 pt + 0.5 pt)


NB:

- 1) Justifier et argumenter vos réponses
- 2) Faites vos calculs à 10⁻³ prés.

Université de Tlemcen Faculté des Sciences Département de Mathématiques 1ère Année LMD-MI

.

valle.

1) Compléter le tableau suivant :

Classes C _i	c _i (centre de la classe C _i)	f_i	Ni	Fi	f _i C _i

Dresser le tableau des f_i , F_i , N_i , $f_i \, x_i$ et $f_i \, (x_i)^2$.

- 2°) Déterminer le mode de X à partir du diagramme en bâtons de fréquences partielles de
- $3^{\circ})$ Tracer la courbe cumulative des fréquences de X.
- 4°) Calculer et interpréter F(2,7) et 1-F(5)
- 5°) Calculer la moyenne, la variance et l'écart type de X.

Exercice 5 (Facultatif)

Une enquête auprès de la gendarmerie nationale concernant le nombre d'accidents mortels par jour pendant les 100 premiers jours de l'année 2008 entre une ville A et une ville B. Les données de cette enquête sont :

Université de Tlemcen Faculté des Sciences Département de Mathématiques 1^{ère} Année LMD-MI

- a) Déterminer l'ensemble de population Ω , l'individu ω et C l'ensemble des modalités de cette étude statistique.
- **b)** On note X la variable statistique discrète (ou caractère discret) égale aux nombres d'accidents par jour Compléter le tableau suivant :

Xi	n_i	f_i	N _i	F_{i}	f _i x _i

- 1°) Tracer le diagramme en bâtons de fréquences partielles du caractère X.
- 2°) Trouver le pourcentage des jours dont le nombre d'accidents mortelles est \leq à 3,5.

II°) Variables statistiques continues

Exercice 6

Le caractère continu Y représente la durée d'une communication téléphonique (en mn). Le tableau suivant donne les valeurs de Y réparties par classes et par effectifs partiels :

Classe Ci	[0 10[[10 20[[20 30[[30 40[
$\mathbf{n_i}$	21	30	35	10

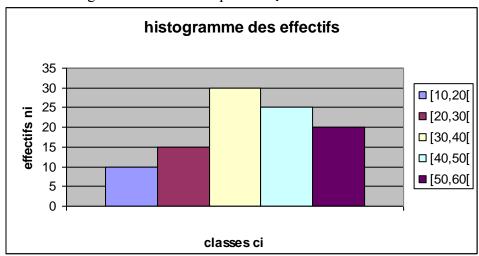
- 1°) Tracer l'histogramme de effectifs partiels n_i.
- 2°) Calculer le mode de Y.
- 3°) Donner l'expression de la fonction de répartition de Y dans la classe $C_3 = [20, 30]$
- 4°) Déterminer la classe de la médiane et calculer la médiane du caractère Y.
- 5°) Calculer le pourcentage des communications dont la durée et dans l'intervalle $[\bar{x} \sigma, \bar{x} + \sigma]$.

Exercice 7

Le caractère X représente le poids d'un sportif. Le tableau suivant donne les valeurs de X réparties par classes et par effectifs partiels :

Classe Ci	[70 74[[74 78[[78 82[[82 86[[86 90[[90 94[
$n_{\rm i}$	4	8	18	12	6	2

1°) Compléter le tableau suivant :


- ,									
Classe	c_i	ni	N_i	f_i	F_i	n_i c_i	$n_i c_i^2$		
C_{i}	centre de								
	classe								

- 2°) Tracer l'histogramme de fréquences partielles.
- 3°) Calculer le mode M_O et la moyenne du caractère X.
- 4°) Calculer Var(X) et 1'écart type σ.
- 5°) Tracer la courbe cumulative de fréquences de X.
- 6°) Déterminer l'intervalle $[Q_2, Q_3]$ et donner son interprétation.
- 7°) Calculer le pourcentage des sportifs qui ont un poids dans l'intervalle [79,34 82,02]

Exercice 8

Université de Tlemcen Faculté des Sciences Département de Mathématiques 1^{ère} Année LMD-MI

Tracer l'histogramme de effectifs partiels n_i .

A partir de l'histogramme des $\mathbf{n_i}$ d'un caractère X, calculer : le mode ,la moyenne et l'écart type.

- Cossige du Contrôle Continu - Statistique. Exercice 1. Questions de cours (6 pts) 1) On note N=effectiffstal=Card N. et Ni=le

Noulore d'individus w dont la valeur de Xeregale à Xi

Nou la definition de fi

Noulore d'individus w dont la valeur de Xeregale à Xi

Al Ni la definition de fi

Noulore d'individus de finition de fi

Noulore d'individus de finition de fi

Noulore d'individus de finition d det ni pourcentage des w dont la Valeur de luter prétation: Fi = pourceutage des w dubla Valeur de X est nu ferrieure nu pando à vir X evegale å 21 2) Fx (xi)= Fi (1pt) de X'est in sevieure or égale à 2î (II) (a) l'étendue e = XMax 2 min 171-140=31 (015pt) (2) D'abrés YULE M22,5 VN 2 6,64 (015pr) Japres 100 sor h= hyperer d'une clare : h verifie him> E sor h= hyperer d'une clare : h verifie him> E Jin h> e = 31-4142 outreud l= 415 015 pt Ausi les clarres de même luqueur soil: C1=[140;14415[iCz=[14415]149[iC3=[149;15315[1/4

4=[153,5;158[; C5=[158;1645[; C6=[1645;167] C7= 167; 1711T Exercía 2' (5,5 pts)

D= ensemble des frans (0,5 pt); w = 2 francos (0,5 pts) 2) a) Course la modelite 4 de répète plus que les autres (015/02) Alus Mo (Node) = 4 (015/02) C= f0, 1, 2,3,415 p (015 pr) b) = 4+0+4+... +3 = = = 3 (015 pr) c) $Var(x) = \frac{(015 pr)}{4^2 + 0^2 + \dots + 3^2} - (\overline{z})^2 (015 pr)$ => Var(x)=117333 (015pr) d) our auge d'abord les modeletes per ordre croissant: 01 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5 Course N=15 (1/whair, 15=2x7+1). A/M la Mediane Me et la (7+1) = valeur (015 pt)
Ainsi Me = 3 (8=valeur) (015 pt) 1.) Exercice 3' (817 pts)
10) 142:= montore de familles quaet 4 eeu faut (017 pt)

onnote N=effectiftotal. N= 5 ni = 794 (015pr) (4.5 pt) $\mathcal{N}_i \mathcal{X}_i^2$ \mathcal{M}_{λ} \mathcal{X}_{λ} Xi ni Ni 201 201 201 201 0,253 01253 2 238 476 0,552 0,299 439 3 0,172 411 1233 0,178 01904 568 0,069 01973 01992 90 01018 540 1,000 01007 794 421 294 3) 1) $\infty = \frac{1}{794} \sum mixi = \frac{2063}{794} = 2,598$ Inixi= ∑ni αi= 2063 n) $Var(x) = \frac{1}{794} \sum_{n > 2} \frac{1}{(2.598)} = \frac{1}{794} \frac{1}{(2.598)} = \frac{1}{1,899}$ = V11899 = 11377 OITH 4) Diagramme en batons des fi fi p 250 0,172 0,069 0,010 0,007 2 0 1 0,5 pr

metani de re partitioni 0.8i x < 1 0.1538i $1 \le x < 2$ 0.5528i $2 \le x < 3$ 0.7258i $3 \le x < 4$ Fx (x) = 01904 Si 4 = x < 5 019738, 5 < 2 < 6 01992 80 6 6 2 < 7 1,000 h 2>7 la courbe cumulablere des frequences (015 pt a) Fx (3,65)=0,725 (3 < 3,65 < 4) (0,5 pr)

Interprétation : Al ja 72,5% de famille qui ent un noulon d'enfant inférieur megal (<) à 3,65 0,027 (0,5pr) b) $1-F_{x}(5)=1-0.1973=$ off on faut of skertement superseur (>) à 5. Juter métatin

Your MILABBAS

Université de Tlemcen Faculté des Sciences Département de Mathématiques 1ère Année LMD-MI

Contrôle Continu - Statistique descriptive - (Jeudi 24Mars 2022)

Exercice 1 (Questions de cours) (6 pts)

I) Soit X, un caractère discret: $X \cap \Omega \rightarrow \{x_1, \dots, x_n\}$. (avec $x_1 < x_2 < \dots < x_n$) 1) donner la définition de f_i , fréquence partielle de la modalité x_i . (1 pt) 2) Donner et interpréter la valeur de $F_X(x_i)$, où F_X est la fonction de répartition de X. (1 pt + 1 pt) II) Soit Y un caractère continu définie sur une population Ω . On note N l'effectif total. N=50, $x_{min}=140$ et $x_{Max}=171$. a) Calculer l'étendue e du caractère X. (0.5 pt)b) En utilisant la méthode de YULE, Déterminer le nombre (m) de classes et calculer h la longueur (0.5 pt + 1 pt)c) Déterminer les classes de valeurs (de même longueur h) du caractère Y. (1pt)

Exercice 2 (5,5 pts)

Le médecin de la Faculté des sciences a relevé le nombre X d'étudiants qui se sont présentés par jour à son service pendant une période de 15 jours.

Les valeurs prises par X sont données par la série statistique suivante:

4,0,4,1,2,5,4,2,3,4,3,4,4,2,3.

1) Déterminer la population Ω , l'individu ω et C l'ensemble des modalités (0.5 pt + 0.5 pt + 0.5 pt)

2) Calculer directement à partir de la série statistique :

, b) la moyenne \bar{x} , c) La variance Var(X), d) la médiane M_e . a) Le mode Mo (1pt) (1 pt)

Exercice 3(8.5 pts)

Soit X le caractère discret égal au nombre d'enfants parfamille d'un quartier de la ville de Tlemcen. Les valeurs prises par X avec leurs effectifs partiels respectifs sont données par :

$x_i \mid 1$	2 3	4 5 6	7			
n _i 201	238 137	142 55 15	6			
1) Inter	préter le no					**************************************
2) Dres	ser le tablea	u suivant :			·	(0.5pt)
Xi	nı	fi	Ni	F _i	f _i n _i	$\frac{(2 \text{ pts})}{f_i(n_i)^2}$
in the						11 (111)-
3) Calcu	ıler : i) la mo	yenne \bar{x} (0	5 pt) : ii)	l'écart type σ_X .		(15)
4) Trace	er le diagran	ime en bâtons	de fi	(0.5 pt)		(1.5 pt)
5) Déter	rminer la for	iction de répar	tition Fy	(old pt)		
6) Trace	er la courbe	cumulative des	fréquences	deX		(1 pt)
7) Calc	uler et interp	oréter: a) F _x (3,65)	(0.5 pt +0.5 pt)	; b) 1-F _x (5	(0.5 pt) (0.5 pt + 0.5 pt)
NB:						

1) Justifier et argumenter vos réponses

2) Faites vos calculs à 10-3 prés.