

1ère année M.I - Semestre 1 Examen de rattrapage : Analyse 1 Durée : 1h30mn

Aucun document n'est autorisé. L'usage de tout appareil électronique est strictement interdit.

Exercice 1. (5 Pts). Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction non nulle vérifiant

$$\forall (x,y) \in \mathbb{R}^+ \times \mathbb{R}^+, \quad f(x+y) = f(x) + f(y) \qquad (\star)$$

$$\forall (x,y) \in \mathbb{R}^+ \times \mathbb{R}^+, \quad f(xy) = f(x)f(y) \tag{**}$$

- 1) Montrer que f(1) = 1 et f(0) = 0.
- 2) Montrer que $\forall n \in \mathbb{N}, \quad f(n) = n.$
- 3) Montrer que $\forall r \in \mathbb{Q}^+, \quad f(r) = r.$
- 4) Montrer que $\forall x \in \mathbb{R}^+, \quad f(x) \ge 0.$
- 5) En déduire que f est une fonction croissante.

Exercice 2. (4 Pts)

Montrer que l'équation

$$xe^{\sin(x)} = \cos(x)$$

admet une solution unique dans l'intervalle $]0, \frac{\pi}{2}[.$

Exercice 3. (6 Pts).

On considère deux suites (u_n) et (v_n) définies par récurrence de la façon suivante

$$\forall n \in \mathbb{N}, \quad \left\{ \begin{array}{l} u_0 = 1 \\[1mm] u_{n+1} = \frac{u_n + 2v_n}{3} \end{array} \right. \qquad \text{et} \quad \left\{ \begin{array}{l} v_0 = 12 \\[1mm] v_{n+1} = \frac{u_n + 3v_n}{4} \end{array} \right.$$

- 1) Montrer que $(v_n u_n)$ est une suite géométrique en précisant la raison et le premier terme.
- 2) En déduire l'expression de $(v_n u_n)$ en fonction de n.
- 3) Montrer que (u_n) est croissante et (v_n) est décroissante.
- 4) En déduire que (u_n) et (v_n) convergent vers la même limite l.
- 5) On pose (w_n) la suite définie pour tout $n \in \mathbb{N}$ par $w_n = 3u_n + 8v_n$.
- a) Montrer que (w_n) est une suite constante.
- b) En déduire la limite l de (u_n) et (v_n) .

Exercice 4. (5 Pts).

Soit la fonction réelle d'une variable réelle définie par

$$f:\mathbb{R}\to\mathbb{R}$$

$$x \longmapsto f(x) = \begin{cases} x + e^{-\frac{1}{x^2}} & \text{si } x > 0\\ \sin(x) & \text{si } x \le 0. \end{cases}$$

- 1) Montrer que f est dérivable en tout point x de \mathbb{R}^* en calculant sa dérivée.
- 2) f est-elle dérivable en 0?
- 3) f' est-elle continue en 0?
- 4) f est-elle deux fois dérivable en 0?

Corrigé de l'examen de rattrapage : Analyse 1 Durée : 1h30mn

Exercice 1. (5 Pts)

1) Comme f n'est pas nulle, alors $\exists \alpha \in \mathbb{R}^+$, tel que $f(\alpha) \neq 0$.

D'après $(\star\star)$, on a $f(\alpha)=f(1.\alpha)=f(1).f(\alpha)$.

Ainsi,

$$f(\alpha)[f(1) - 1] = 0.$$

Puisque $f(\alpha) \neq 0$, alors f(1) = 1. (**0.5 Pt**)

Aussi, d'après (\star) , f(0) = f(0+0) = f(0) + f(0). Ceci implique que f(0) = 0. (**0.5** Pt)

2) Montrons la propriété par récurrence sur n. Soit P(n): f(n) = n.

Pour n = 0, on a f(0) = 0. (**0.25 Pt**)

Supposons que P(n) est vraie pour un certain rang n et montrons que f(n+1)=n+1. (${\bf 0.25}$ ${\bf Pt})$

En utilisant (\star) ,

$$f(n+1) = f(n) + f(1) = n+1.$$
 (0.5Pt)

3) Soit $r \in \mathbb{Q}^+$. Alors $r = \frac{p}{q}$ (**0.5** Pt) avec $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$. En utilisant $(\star\star)$, on a

 $qf(\frac{p}{q}) = f(q)f(\frac{p}{q}) = f(q.\frac{p}{q}) = f(p) = p.$ (0.5Pt)

Donc, $f(\frac{p}{q}) = \frac{p}{q}$. (0.5 Pt)

4) Soit $x \in \mathbb{R}^+$. D'après $(\star\star)$, on a

$$f(x) = f(\sqrt{x}.\sqrt{x}) = f(\sqrt{x}).f(\sqrt{x}) = [f(\sqrt{x})]^2 \ge 0.$$
 (0.5Pt)

5) Supposons que $x \le y$. Alors pour $y - x \ge 0$, on a $f(y - x) \ge 0$. (**0.5 Pt**) D'après (\star) ,

$$f(y) = f(y - x + x) = f(y - x) + f(x) \ge f(x)$$
. (0.5Pt)

Donc, f est croissante.

Exercice 2. (4 Pts).

Posons $f(x) = xe^{\sin(x)} - \cos(x)$. (**0.25 Pt**)

On remarque que f est continue sur $[0,\frac{\pi}{2}]$ (0.25 Pt) et on a

$$f(0) = -1 < 0$$
 et $f(\frac{\pi}{2}) = \frac{\pi e}{2} > 0$. (0.5Pt)

D'après le théorème des valeurs intermédiaires, ($\mathbf{0.5}\ \mathbf{Pt}$) f possède au moins une racine dans $]0,\frac{\pi}{2}[.$ ($\mathbf{0.25}\ \mathbf{Pt}$)

D'autre part, on a

$$f'(x) = (1 + x\cos(x))e^{\sin(x)} + \sin(x)$$
. (1Pt)

Remarquons que tous les termes de f'(x) sont positifs pour $0 < x < \frac{\pi}{2}$. ($\mathbf{0.5}\ \mathbf{Pt}$) Donc, f'(x) > 0. ($\mathbf{0.25}\ \mathbf{Pt}$)

Ceci implique qu'il existe un unique c tel que f(c)=0. (${\bf 0.5~Pt})$

Exercice 3. (6 Pts).

1) Pour tout $n \in \mathbb{N}$,

$$v_{n+1} - u_{n+1} = \frac{u_n + 3v_n}{4} - \frac{u_n + 2v_n}{3}$$
$$= \frac{3u_n + 9v_n - 4u_n - 8v_n}{12} = \frac{v_n - u_n}{12}. \quad (0.5Pt)$$

Donc, $(v_n - u_n)$ est une suite géométrique de raison $\frac{1}{12}$ et de premier terme $v_0 - u_0 = 11$. ($\mathbf{0.5}$ \mathbf{Pt})

2) Pour tout $n \in \mathbb{N}$, on a

$$v_1 - u_1 = \frac{1}{12}(v_0 - u_0) = \frac{1}{12}.11$$

$$v_2 - u_2 = \frac{1}{12}(v_1 - u_1) = \left(\frac{1}{12}\right)^2.11$$
.

$$v_n - u_n = \left(\frac{1}{12}\right)^n.11. \quad (\mathbf{0.5Pt})$$

Supposons que cette dernière propriété est vrai pour un certain rang n et montrons que $v_{n+1}-u_{n+1}=\left(\frac{1}{12}\right)^{n+1}.11$.

Remarquons que

$$v_{n+1} - u_{n+1} = \frac{v_n - u_n}{12} = \left(\frac{1}{12}\right)^n .11.\frac{1}{12}$$
$$= \left(\frac{1}{12}\right)^{n+1} .11 \quad (\mathbf{0.5Pt})$$

3) Pour tout $n \in \mathbb{N}$, on a

$$u_{n+1} - u_n = \frac{u_n + 2v_n}{3} - u_n = \frac{2(v_n - u_n)}{3}$$
$$= \frac{2}{3} \left(\frac{1}{12}\right)^n .11 > 0.$$

Donc, (u_n) est croissante. (0.5 Pt) On a aussi,

$$v_{n+1} - v_n = \frac{u_n + 3v_n}{4} - v_n = u_n - v_n$$
$$= -\frac{1}{4} \left(\frac{1}{12}\right)^n .11.$$

Donc, (v_n) est décroissante. ($\mathbf{0.5}\ \mathbf{Pt})$

4) On a

$$\lim_{n \to +\infty} (v_n - u_n) = \lim_{n \to +\infty} 11 \left(\frac{1}{12}\right)^n = 0. \quad (\mathbf{0.5Pt})$$

Puisque (u_n) est croissante et v_n est décroissante, alors (u_n) et v_n sont adjacentes. ($\mathbf{0.5}\ \mathbf{Pt}$) Donc,

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = l. \quad (0.5Pt)$$

5) a) Pour tout $n \in \mathbb{N}$,

$$w_{n+1} = 3u_{n+1} + 8v_{n+1} = 3\left(\frac{u_n + 2v_n}{3}\right) + 8\left(\frac{u_n + 3v_n}{4}\right)$$
$$= u_n + 2v_n + 2u_n + 6v_n = 3u_n + 8v_n = w_n.$$

Donc, w_n est une suite constante. (0.5 Pt)

b) D'après a) on a

$$\forall n \in \mathbb{N}, \quad w_n = w_0 = 3u_0 + 8v_0$$

= 3 + (8.12) = 99

Donc,

$$99 = 3u_n + 8v_n.$$
 (0.5Pt)

Quand $n \to +\infty$, on obtient

$$99 = 3l + 8l = 11l \Rightarrow l = 9.$$
 (0.5Pt)

Exercice 4. (5 Pts). 1) Remarquons que f est continue sur $\mathbb R$ avec $\lim_{x\to 0^+} x + e^{-\frac{1}{x^2}} = 0 = f(0)$.

De plus, f est dérivable sur \mathbb{R}_+^* , (la composition des fonctions simples) de dérivée $f'(x) = 1 + \frac{2}{x^3}e^{-\frac{1}{x^2}}$ ($\mathbf{0.5 \ Pt}$)

Elle est aussi dérivable sur \mathbb{R}_{-}^{*} de dérivée $f'(x) = \cos(x)$. (0.5 Pt)

2) On a

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} 1 + \frac{1}{x} e^{-\frac{1}{x^2}} = 1. \quad (0.5Pt)$$

D'autre part,

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\sin(x)}{x} = 1. \quad (0.5Pt)$$

Donc, f est dérivable en 0 et f'(0) = 1. ($\mathbf{0.5} \ \mathbf{Pt}$)

3) Comme

$$\lim_{x \to 0^+} 1 + \frac{2}{x^3} e^{-\frac{1}{x^2}} = 1 \quad \text{et} \quad \lim_{x \to 0^-} \cos(x) = 1, \quad (\mathbf{0.5Pt})$$

alors f' est continue en 0. (0.5 Pt)

4) On a

$$\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{2}{x^4} e^{-\frac{1}{x^2}} = 0 \quad (\mathbf{0.5Pt})$$

et

$$\lim_{x \to 0^{-}} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\cos(x) - 1}{x} = 0. \quad (0.5Pt)$$

Ainsi, f est deux fois dérivable en 0. (0.5 Pt)