Université Aboubakr Belkaid Faculté des Sciences Département de Mathématiques Rattrapage du Module Structure Machinel_28_06_2022 Durée 1h 30min

Documents et calculatrices non autorisés.

Exercice 1:4 pts

Répondre par vrai ou faux aux questions suivantes :

- 1. La taille d'un texte contenant *n* caractères ASCII codé en format UTF_16 est **16n** bits.
- 2. Le code Gray du nombre octal 257₈ est 011111000_{Gray}.
- 3. La représentation en complément à un, sur un octet, de l'entier -0 est 11111111_{C1}.
- 4. La représentation en complément à deux, sur un octet, de l'entier -12 est 11110100_{C2}.
- 5. Le code Excès_3 du nombre hexadécimal 37₁₆ est 10001000_{xs-3}.
- 6. Le plus petit entier signé représentable en complément à deux sur six bits est -32.
- 7. Le code octal du nombre 16.25 est 20.2_8 .
- 8. Le code BCD de l'entier binaire 00111010_2 est 01011000_{BCD} .

Exercice 2:6 pts

Les questions 1 et 2 sont indépendantes.

1. Considérons le codage à taille variable décrit par la table suivante :

A	В	С	D	E	F	G
1010	0010011	01001	01110	110	0111100	0111110
Н	I	J	K	L	M	N
0010010	1000	011111110	0111111111001	0001	00101	1001
О	P	Q	R	S	T	U
0000	01000	0111101	0101	1011	0110	0011
V	W	X	Y	Z	ESP (éspace)	É
001000	0111111111000	01111110	0111111111	01111111101	111	?

• En utilisant la table ci-dessus, décoder le message suivant afin de trouver le titre d'une belle chanson de Stromae :

• Voici une citation de Gœthe et son codage correspondant en utilisant la table ci-dessus:

Déterminer le code du caractère : É

2. Voici une phrase codée en LATIN-1 (hexadécimal), contenant que des caractères du code ASCII et le caractère f du code Latin_1.

4E 61 69 20 6C 83 6F 0A 74 20

Quel est le code Latin_1, du caractère f ?

Exercice 3; 10 pts

- 1. Codez sur un octet les entiers : -23_{16} , $-5D_{16}$ et $+5D_{16}$, selon les formats suivants :
 - Signe+Valeur absolue.
 - Complément à un.
 - Complément à deux.
- 2. Exécuter l'opération -35-5D₁₆, en complément à un, sur 8 bits.

Exécuter l'opération $+23_{16} +5D_{16}$, en complément à deux, sur 8 bits.

Dans les deux cas, donner les résultats en binaire et commenter les résultats obtenus.

Bon travail

Corrigé: 2022

Exercice 1:4

bits.

Vrai pour toutes les questions		0.5+0.5+0.5+0.5+0.5+0.5+0.5+0.5	
Exerc	cice 2:6		
	mot est: Formidable.	2	
2. Le	code du caractère É est: 00000000.	2	
1.	Code latin 1 du caractère f est 83.	2	
Exerc	rice 3:10		
1.	Représentation en Signe+Valeur absolue sur un	octet.	
	$-23_{16} = 1 \ 0100011_{\text{sva}}.$	0.5	
	$-5D_{16} = 1\ 1011101_{sva}.$	0.5	
2	$+5D_{16} = 0\ 1011101_{\text{sva}}$	0.5	
2.	Représentation en Complément à un sur un octe		
	$-23_{16} = 1 \ 10111100_{c1}$. $-5D_{16} = 1 \ 0100010_{c1}$.	0.5 0.5	
	$-5D_{16} = 1 0100010_{c1}$. + $5D_{16} = 0 1011101_{c1}$	0.5	
3.	Représentation en Complément à deux sur un o		
٥.	$-23_{16} = 1 \ 1011101_{c2}$.	0.5	
	$-5D_{16} = 1\ 0100011_{c2}$.	0.5	
	$+5D_{16} = 0\ 1011101_{c2}$	0.5	
4.			
	$-35 = -0100011_2$.	0.5	
	• en complément à un : -35-5D ₁₆	0.5	
	1 1011100	0.25	
	1 0100010	0.25	
	10 1111110 	0.25	
	+ 1	0.25	
	$0 11111111=+ 11111111_2$	0.5+0.50	
	Ce résultat est faux car la somme de deux entier		
	cause c'est qu'on ne peut pas représenter, en co	<u>=</u>	
	bits.	0.75	
	• en complément à deux : +23 ₁₆ +5D ₁₆	0.25	
	0 0100011 0 1011101	0.25 0.25	
	$\frac{0.1011101}{1.00000000} = 100000000_2$	0.23 0.50+0.50	
	Ce résultat est faux car la somme de deux entier		
	cause c'est qu'on ne peut pas représenter, en co		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 /	

0.75