Université Aboubekr BELKAID - Tlemcen	A.U~2020/2021 - 2ème année Mathématiques
Faculté des Sciences - Département de Mathématiques	Analyse 3 - Fiche de T.D n°4

Exercice 1 : Pour chacune des fonctions suivantes, vérifier les conditions du théorème de Dirichlet puis déterminer leurs séries de Fourier :

$$f(x) = \begin{cases} ax & \text{si } -\pi < x \le 0 \\ bx & \text{si } 0 \le x < \pi \end{cases}, \quad g(x) = x^2 \text{ dans }]-\pi, \pi[\text{ puis dans }]0, 2\pi[h(x) = |x| \text{ dans }]-1, 1[\quad , \quad u(x) = \sin(ax) \text{ dans }]-\pi, \pi[$$

<u>Exercice 2</u>: A l'aide de certaines séries de Fourier précédentes calculer les somme suivantes (justifier)

$$S_1 = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$$
 , $S_2 = \sum_{n\geq 1} \frac{1}{n^4}$, $S_3 = \sum_{k\geq 0} (-1)^k \frac{4k+2}{(4k+2)^2-1}$

Exercice 3 : On considère la fonction de deux variables réelles

$$F(x,y) = \ln\left(1 - 2y\cos x + y^2\right)$$

où $y \neq \pm 1$.

- 1. En considérant x fixe, déterminer le développement en série entière centrée en 0 de F (comme fonction de y) en développant d'abord $\frac{\partial F}{\partial y}$.
- 2. En déduire, sans faire de nouveaux calculs, le développement de F en séries de Fourier (comme fonction de x).

Exercice 4 : Trouver, en utilisant l'identité de Parseval-Plancherel, toutes les fonctions $f \in C^2_{\mathbb{C}}([\pi,\pi])$ et qui vérifient

$$\forall x \in [-\pi, \pi], \ |f''(x)| \le |f(x)|$$
 et $\int_{-\pi}^{\pi} f(x) \ dx = 0.$

Exercice 5: On considère la fonction $g(x) = |\sin x|$.

- 1. Montrer que c'est une fonction π -périodique. Déterminer sa série de Fourier. La somme de cette série est-elle égale à g?
- 2. Soit l'équation différentielle y''(x) + y(x) = g(x). Montrer qu'elle admet une solution particulière π -périodique et ce en déterminant sa série de Fourier.