Université de Tlemcen, Département de mathématiques, Module: Transformations Intégrales, Octobre 2020.

Examen final, Durée.1h30.

Table des transformées de Laplace est autorisée.

Exercice1.(10 pts)

Résoudre par la transformée de Laplace

$$y'' - 10y' + 9y = 5t$$
, $y(0) = -1$, $y'(0) = 2$

Exercice 2.

Partie I).(05 pts)

a) Résoudre par la transformée de Fourier

$$\frac{\partial u}{\partial t} = c \frac{\partial^2 u}{\partial x^2}, \quad x \in R, \ t > 0$$
$$u(x, 0) = f_0(x), \quad x \in R$$

où c > 0, et $f_0 \in L^1(R)$.

Partie II) .(05 pts)

Soient $f \in L^1(R)$, et $g \in L^1(R)$.Posons

$$(f * g)(x) = \int_{R} f(x - y) g(y) dy$$

- a) Montrer que si f est continue et bornée , alors f * g est continue.
- b) En déduire que si f_0 est continue, positive et bornée, alors la solution u(x,t) obtenue dans I) est continue, positive et bornée.

Université de Tlemcen, Département de mathématiques, Module: Transformations Intégrales, Octobre 2020.

Examen final, Durée.1h30. (corrigé)

Exercice1:

Résoudre

$$y'' - 10y' + 9y = 5t$$
, $y(0) = -1$, $y'(0) = 2$

Solution:

la transformée de Laplace Y(s) vérifie

$$(s^2 - 10s + 9) Y(s) + s - 12 = \frac{5}{s^2}$$
 02 pts

ceci donne

$$Y(s) = \frac{5 + 12s^2 - s^3}{s^2(s-9)(s-1)}$$
 01 pt

la décomposition en fraction rationnelle donne

$$Y(s) = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{(s-9)} + \frac{D}{(s-1)}$$
 02pts

un calcul simple donne

$$Y(s) = \frac{50/81}{s} + \frac{5/9}{s^2} + \frac{31/81}{(s-9)} + \frac{50/81}{(s-1)}$$
 02 pts

ainsi

$$y(t) = \frac{50}{81} + \frac{5}{9}t + \frac{31}{81}e^{9t} - 2e^t \quad 03 \text{ pts}$$

Exercice 2.

Partie I) 05 pts

a) Résoudre par la transformée de Fourier

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, \qquad x \in R, \ t > 0$$

$$u(x,0) = f(x), \qquad x \in R$$

où c est une constante réelle, et $f\in L^{1}\left(R\right)$.

solution:

appliquons la transformée de Fourier, nous aurons une EDO du premier ordre

$$\frac{\partial \widehat{u}(\omega, t)}{\partial t} = -c^2 \omega^2 \widehat{u}(\omega, t)$$
$$\widehat{u}(\omega, 0) = \widehat{f}(\omega) \quad 02 \text{ pts}$$

la solution est donnée par

$$\widehat{u}(\omega, t) = \widehat{f}(\omega) e^{-c^2 \omega^2 t}$$
 01.5 pts

ainsi, la solution est donnée par la transformation inverse

$$u(x,t) = (f * P_t)(x)$$
 01.5 pt

avec $P_t(x)$ une Gaussienne positive.

Partie II) .(05 pts)

Soient $f \in L^1(R)$, et $g \in L^1(R)$.Posons

$$(f * g)(x) = \int_{R} f(x - y) g(y) dy$$

- a) Montrer que si f est continue et bornée , alors f*g est continue.
- b) En déduire que si f_0 est continue, positive et bornée, alors la solution u(x,t) obtenue dans I) est continue, positive et bornée.

Solution:

a) Soit (x_n) une suite réelle telle que $x_n \to x$. Posons

$$F_n(y) = f(x_n - y) g(y)$$

alors $F_n(y) \to F(y) = f(x - y) g(y)$ p.p dans R.Comme

$$|F_n(y)| \leq ||f||_{\infty} |g(y)|$$

le th.de convergence dominée de Lebesgue permet de conclure que

$$\int_{R} F_{n}(y) dy \to \int_{R} F(y) dy \quad 02 \text{ pts}$$

b) Comme la solution u s'écrit $u(x,t)=f_0*P_t$, a) implique que u est continue $\mathbf{01pt}$. De plus, elle est positive car la Gaussienne P_t est positive $\mathbf{01}$ \mathbf{pt} . Montrons que la solution est bornée. En effet

$$|u(x,t)| \le ||f_0||_{\infty} \int_{\mathcal{B}} P_t(x-y) \, dy$$

or il est simple de montrer que $\int_{R} P_{t}(x-y) \, dy$ est bornée.(01 pts)

Faculté des sciences-Département de mathématiques

3ème année mathématiques AU: 2019/2020

Examen final

Groupe 2

N°	Nom et Prenoms
1	ALLOUCHE IMANE 07
2	ATTAR KHEIRA 14
3	BARAKA MAISSA 11
4	BEKHTAOUI NOURIA 07
5	BELLIFA YOUNES ATIF 06.5
6	DIB IKRAM 07.5
7	DJELTI AISSA 11
8	FEROUANI SABRIA
9	GHEZLAOUI SARRA 02
10	KERBOUA NOUARA BATOUL 11
11	KHIAS ILHAM 11
12	KHIRI MOHAMMED EL AMINE
13	MADANI ISMAHANE 03
14	MALKI IKRAM 11.5
15	MEKKAOUI KAWTHER 12.5
16	MOHAMMEDI YASMINE 11
17	OUANANE FATIMA ZOHRA 10
18	OUHADJ REDOUANE 11
19	SADAOUI CHAIMA
20	SAHRAOUI SIHAM 12
21	SIFI KHOUIRA
22	TABTI HIDAYAT 12
23	TOU RAFIQ OKACHA 10
24	ZEHAR LOUBNA IKHLAS 14

25 Rouigueb Anas 00

Groupe 1

N°	Nom et Prénoms
1	ABDALLAH HAMISI ABDALLAH
2	ADNANE MOHAMMED
3	AZIZ YAMINA 12
4	BELDJILALI CHAHINEZ 03
5	BELMOKHTAR KHEDIDJA 12
6	BENAISSA FATIMA MANEL 08
7	BENAYADI AMEL 12
8	BENCHELIH YOUCEF 02
9	BENIKHLEF RANIA 08
10	BENMANSOUR SARRA
11	BENYOUB KHEIRA
12	BESSEGHIR MOHAMMED 11
13	DJEBBAR AHMED 13.5
14	DJEDID KAOUTHER 08
15	GHERMOUL KHEDOUDJA SERINE 14.5
16	HACHEMI NADJLAE 10
17	HAMMOUTI FATIMA ZOHRA 14
18	HASSOUN GHIZLENE 09
19	HENAOUI ZAHIA 10
20	NEDJRAOUI YOUSRA 12
21	REFOUFI MOUNIA 10
22	SAIDI MOHAMMED ABDELHADI 12

ZERRIAHEN EL HASSAN 15

23

24 ZOUAOUI IMANE 04

25 Chick Khouira 14