Université de Tlemcen Faculté des Sciences Département de Mathématiques L2 MATH Topologie 05/02/20

Epreuve Finale (Durée 01h30)

Exercice1: 07pts

1)Soit (E, τ) un espace topologique

a) Montrer que toute partie compacte de E est fermée

b)Donner un exemple de partie fermée qui n'est pas compacte

- c) Montrer que si E est compact alors toute partie fermée de ${\bf E}$ est compacte
- 2) Soit (E,d) un espace métrique et $(x_n)_{n\in\mathbb{N}}$ une suite dans E.

On pose $A = \{x_n, n \in \mathbb{N}\}$ et $l \in A^c = C_A^E$

- a) Montrer que $l \in \bar{A}$ si et seulement si l'est une valeur d'adhérence pour la suite $(x_n)_{n \in \mathbb{N}}$
- b) On suppose que $(x_n)_{n\in\mathbb{N}}$ admet une seule valeur d'adhérence l et $U=\{x_n,n\in\mathbb{N}\}\cup\{l\}$

Montrer que U est compact si et seulement si la suite $(x_n)_{n\in\mathbb{N}}$ est convergente.

Exercice 2: 09pts I.

Soit (E,d) un espace métrique et F un ensemble. On définit l'application $d_{\varphi}: F \times F \to \mathbb{R}^+$ telle que :

 $\forall x, y \in F \ d_{\varphi}(x, y) = d(\varphi^{-1}(x), \varphi^{-1}(y)) \text{ où } \varphi \colon E \to F \text{ est une bijection}$

a) Montrer que d_{φ} définit une distance sur F

b) Montrer que φ est une isométrie de(E,d) sur (F,d_{φ})

On considère E=]-1,1[et \mathbb{R} munis de la distance usuelle d(x,y)=|x-y|

a) Montrer que (E, d) n'est pas complet

- b) Montrer que l'application $\varphi: (\mathbb{R}, d) \to (]-1, 1[, d)$ telle que $\varphi(x) = \frac{2}{\pi} \arctan x$ est un homéomophisme et $\varphi: (\mathbb{R}, d) \to (]-1, 1[, d_{\varphi})$, est une isométrie
- c) En déduire que l'identité est un homéomophisme de (]-1,1[,d) vers $(]-1,1[,d_{\varphi})$ d)Montrer que toute suite de Cauchy dans $(]-1,1[,d_{\varphi})$ est convergente dans]-1,1[
- e) En déduire que les distances d_{φ} et d sont topologiquement équivalentes mais ne sont pas métriquement équivalentes.

Exercice 3 04 pts Soient (E,d) et (F,δ) deux espaces métriques, f et g deux applications continues de (E,d) vers (F,δ)

1) Montrer que $A = \{x \in E, f(x) \neq g(x)\}$ est ouvert

2) Montrer que si A est dense dans E alors A^{C} ne peut pas être également dense dans E

Corrigé

Exercice1

- 1)(03.5pts)
 - a) et c) voir cours
- b) Un exemple de partie fermée qui n'est pas compacte: Dans \mathbb{R} muni de la distance usuelle $[a,+\infty[$ (ou $]-\infty,a]$) où $a\in\mathbb{R}$, est une partie fermée mais non bornée alors non compacte
 - 2)(04pts)
- (E,d) un espace métrique et $(x_n)_{n\in\mathbb{N}}$ une suite dans E $A=\{x_n,n\in\mathbb{N}\}$ et $l\in A^c=C_A^E$ a)" \Rightarrow "
- $l \in \bar{A} \stackrel{def}{\Leftrightarrow} \forall V \in \mathcal{V}(l) \quad V \cap A \neq \emptyset$, comme A est infinie alors: $\forall V \in \mathcal{V}(l) \ \forall m \in \mathbb{N} : \exists n \geq m : x_n \in V$
- Soit $\varepsilon \succ 0$, en posant V=B (l, ε) , on obtient: $\forall \varepsilon \succ 0 \ \forall m \in \mathbb{N} : \exists n \geq m : d(x_n, l) \leq \varepsilon$ alors l est une valeur d'adhérence pour la suite $(x_n)_{n \in \mathbb{N}}$ " \Leftarrow "
- l est une valeur d'adhérence pour la suite $(x_n)_{n\in\mathbb{N}} \stackrel{def}{\Leftrightarrow} \forall \varepsilon \succ 0 \ \forall m \in \mathbb{N} : \exists n \geq m : d(x_n, l) \leq \varepsilon \Rightarrow \forall \varepsilon \succ 0 \ B(l, \varepsilon) \cap A \neq \emptyset$
- comme tout voisinage de l'acontient une $B(l,\varepsilon)$ ($\varepsilon \succ 0$) alors $\forall V \in \mathcal{V}(l)$ $V \cap A \neq \emptyset$ c a.d. $l \in \bar{A}$
- b) On suppose que $(x_n)_{n\in\mathbb{N}}$ admet une seule valeur d'adhérence l et $U=\{x_n,n\in\mathbb{N}\}\cup\{l\}$

On montre que U est compact si et seulement si la suite $(x_n)_{n\in\mathbb{N}}$ est convergente. " \Rightarrow "

U est compact \Rightarrow la suite $(x_n)_{n\in\mathbb{N}}$ est bornée et on peut extraire une sous-suite convergente et comme l'est l'unique valeur d'adhérence alors c'est la limite de la suite $(x_n)_{n\in\mathbb{N}}$ ainsi la suite $(x_n)_{n\in\mathbb{N}}$ est convergente.

Si la suite $(x_n)_{n\in\mathbb{N}}$ est convergente vers $l\in U$ alors U est fermé

on déduit aussi que U est compact (d'aprés I.c :partie fermée d'un compact)) puisque U $\subset \bar{B}(l,\rho)$ où

 $\rho = \delta(U) = \sup \{d(x,y) : (x,y) \in U\}$ ρ est fini car la suite $(x_n)_{n \in \mathbb{N}}$ est convergente.

Exercice 2: 09pts I.(02.5pts)

(E,d) un espace métrique et F un ensemble. $d_{\varphi}: F \times F \to \mathbb{R}^+$ telle que : $\forall x,y \in F \ d_{\varphi}(x,y) = d(\varphi^{-1}(x),\varphi^{-1}(y))$ où $\varphi: E \to F$ est une bijection

a) d_{φ} définit bien une distance sur F, en effet , comme d est une distance alors:

```
 \begin{array}{l} {}^*\forall x,y\in F \quad d_{\varphi}\left(x,y\right)=d\left(\varphi^{-1}\left(x\right),\varphi^{-1}\left(y\right)\right)\geq 0 \\ {}^*(\mathrm{l'identit\'e})\forall x,y\in F \quad d_{\varphi}\left(x,y\right)=0 \Longleftrightarrow d\left(\varphi^{-1}\left(x\right),\varphi^{-1}\left(y\right)\right)=0 \Leftrightarrow x=y \\ {}^*(\mathrm{sym\'etrie})\forall x,y\in F \quad d_{\varphi}\left(x,y\right)=d\left(\varphi^{-1}\left(x\right),\varphi^{-1}\left(y\right)\right)=d\left(\varphi^{-1}\left(y\right),\varphi^{-1}\left(x\right)\right)=d_{\varphi}\left(x,y\right) \\ {}^*(\mathrm{l'in\'egalit\'e}\ \mathrm{triangulaire})\forall x,y,z\in F \quad d_{\varphi}\left(x,z\right)=d\left(\varphi^{-1}\left(x\right),\varphi^{-1}\left(z\right)\right)\leq d\left(\varphi^{-1}\left(x\right),\varphi^{-1}\left(y\right)\right)+d\left(\varphi^{-1}\left(y\right),\varphi^{-1}\left(z\right)\right) \\ \mathrm{alors}\ \forall x,y,z\in F \quad d_{\varphi}\left(x,z\right)\leq d_{\varphi}\left(x,y\right)+d_{\varphi}\left(y,z\right) \end{array}
```

b) φ est une isométrie de(E,d) sur (F,d_{φ}) car elle est bijective et vérifie: $\forall x,y\in E$ $d_{\varphi}(\varphi(x),\varphi(y))=d(\varphi^{-1}(\varphi(x)),\varphi^{-1}(\varphi(y)))=d(x,y)$ II.06,5pts

On considère E=]-1,1[et \mathbb{R} munis de la distance usuelle d(x,y) = |x-y| a) (01pt) (E,d) n'est pas complet car il suffit de prendre la suite: $x_n = 1 - \frac{1}{n}$, $(x_n)_{n \in \mathbb{N}^*} \subset E$ et elle est de Cauchy,en effet

pour $\forall \varepsilon \succ 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n, m \in \mathbb{N} \ n \succ m \ge \left[\frac{1}{\varepsilon} + 1\right] \ |x_n - x_m| = \frac{n-m}{nm} = \frac{1 - \frac{m}{n}}{m} \le \frac{1}{m} \le \varepsilon$ $\lim_{n \to +\infty} x_n = 1 \notin E$

b) (02)L'application $\varphi : (\mathbb{R}, d) \to (]-1, 1[, d_{\varphi})$ telle que $\varphi (x) = \frac{2}{\pi} \arctan x$ est bijective et $\varphi^{-1}(x) = \tan(\frac{\pi}{2}x)$

 $\forall x, y \in \mathbb{R} \quad d_{\varphi}(\varphi(x), \varphi(y)) = |\varphi^{-1}(\varphi(x)) - \varphi^{-1}(\varphi(y))| = |x - y|$ $\forall \varepsilon \succ 0 \quad \forall x, y \in \mathbb{R} \quad \exists \delta_{\varepsilon} \succ 0 \quad |x - y| \leq \delta_{\varepsilon} \quad d_{\varphi}(\varphi(x), \varphi(y)) = |x - y| \leq \varepsilon \text{ il suffit de prendre } \delta_{\varepsilon} = \varepsilon$

donc φ est continue

$$\forall x, y \in]-1, 1[\quad d_{\varphi}(x, y) = |\varphi^{-1}(x) - \varphi^{-1}(y)| = d(\varphi^{-1}(x), \varphi^{-1}(y))$$

$$\forall \varepsilon \succ 0 \quad \forall x, y \in]-1, 1[\quad \exists \delta_{\varepsilon} \succ 0 \quad d_{\varphi}(x, y) \leq \delta_{\varepsilon} \Rightarrow d(\varphi^{-1}(x), \varphi^{-1}(y)) \leq \varepsilon \text{il suffit de prendre } \delta_{\varepsilon} = \varepsilon$$

donc φ^{-1} est continue

Conclusion: φ est un homéomophisme

 $\varphi: (\mathbb{R}, d) \to (]-1, 1[, d_{\varphi}), \text{ est une isométrie d'aprés b})$

c) (01pt) On déduit que l'identité est un homéomophisme de (]-1,1[,d) vers (]-1,1[,d $_{\varphi}$) comme composée de deux homéomophismes car $id = \varphi o \varphi^{-1}$

 $(]-1,1[,d) \stackrel{\varphi^{-1}}{\rightarrow} (\mathbb{R},d) \stackrel{\varphi}{\rightarrow} (]-1,1[,d_{\varphi})$

d)(01,5pts)Toute suite de Cauchy dans (]-1,1[, d_{φ}) est convergente dans]-1,1[en effet,

 $d_{\varphi}(x_n, x_m) = d(\varphi^{-1}(x_n) - \varphi^{-1}(x_m))$ ainsi si $(x_n)_n$ est une suite de Cauchy dans $(]-1, 1[, d_{\varphi})$ alors $(\varphi^{-1}(x_n))_n$ sera une suite de Cauchy dans (\mathbb{R}, d) , et comme (\mathbb{R}, d) est complet elle est convergente vers une limite $l \in \mathbb{R}$ d'où $\varphi(l) \in]-1, 1[$ Grâce à la continuité de φ et de φ^{-1} , $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} \varphi(\varphi^{-1}(x_n)) = \varphi(l)$ Conclusion $(]-1, 1[, d_{\varphi})$ est complet.

e)(01pt) Puisque l'identité est un homéomophisme de (]-1,1[,d) vers (]-1,1[, d_{φ}) alors les distances d_{φ} et d sont topologiquement équivalentes , elles ne sont pas métriquement équivalentes.car (]-1,1[,d)n'est pas complet et (]-1,1[, d_{φ}) est complet.

Exercice 3 04 pts

(E,d) et (F,δ) sont deux espaces métriques, f et g sont deux applications continues de (E,d) vers (F,δ)

1) (03pts) Montrons que $A = \{x \in E, f(x) \neq g(x)\}$ est ouvert

Soit $x_0 \in A$, $f(x_0) \neq g(x_0)$ alors $\exists \beta \succ 0 : \delta(f(x_0), g(x_0)) = \beta$ f est continue au point x_0 alors $(*)\forall \varepsilon \succ 0 \quad \forall x \in E \quad \exists \delta_\varepsilon \succ 0 \quad d(x, x_0) \leq \delta_\varepsilon \Rightarrow \delta(f(x_0), f(x)) \leq \varepsilon$ en particulier (*) est vraie pour $\varepsilon = \frac{\beta}{3}$ g est continue au point x_0 alors $(**)\forall \varepsilon \succ 0 \quad \forall x \in E \quad \exists \delta'_\varepsilon \succ 0 \quad d(x, x_0) \leq \delta'_\varepsilon \Rightarrow \delta(g(x_0), g(x)) \leq \varepsilon$ en particulier (**) est vraie pour $\varepsilon = \frac{\beta}{3}$ Alors $\forall \varepsilon \succ 0 \quad \forall x \in E \quad d(x, x_0) \leq \alpha = \min(\delta_\varepsilon, \delta'_\varepsilon) \Rightarrow \delta(f(x_0), g(x_0)) \leq \delta(f(x_0), f(x)) + \delta(f(x), g(x)) + \delta(g(x), g(x_0))$ alors $\delta(f(x), g(x)) \geq \beta - \frac{2\beta}{3} = \frac{\beta}{3} \Rightarrow f(x) \neq g(x)$ Ainsi $\forall x_0 \in A \quad B(x_0, \alpha) \subset A \quad \text{c.a.d } A \text{ est ouvert}$ 2) (01pt) A est ouvert dans E alors A^C est fermé d'où $\overline{A^C} = A^C$. Si A est dense $\overline{A} = E \quad \text{alors}$ A^C ne peut pas être également dense dans E car on aura $A^C = E = \overline{A} \quad \text{donc}$ $A \subset A^C$ ce qui est impossible!