TD.N°1 : Logique et Ensembles

A.U. 2019-2020

Module: Math 1

Exercice 1.

Soit $E = \{a, b, c\}$ un ensemble. Peut-on écrire?

1)
$$a \in E$$
, 2) $b \subset E$, 3) $\{c\} \subset E$, 4) $\emptyset \in E$, 5) $\emptyset \subset E$, 6) $\{\emptyset\} \subset E$.

Exercice 2.

Soient $A =]-\infty, 3], B =]-2, 7[$ et $C =]-5, +\infty, 3[$, trois parties de \mathbb{R} .

Déterminer
$$A \cap B$$
, $A \cup B$, $A \cap C$, $B \cup C$, $\bar{A} = A^C = \mathbf{C}_{\mathbb{R}}^A$, $A \setminus B$, $A^C \cap B^C$, $(A \cup B)^C$, $(A \cap B) \cup (A \cap C)$, $A \cap (B \cup C)$.

Exercice 3.

Mettre sous forme d'intervalles les ensembles suivants :

et
$$B$$
 et B e

Exercice 4.

1) En utilisant la table de vérité, montrer que la proposition :

$$\left[(P \Rightarrow Q) \land (\bar{P} \Rightarrow Q) \right] \Rightarrow Q$$
 est toujours vraie.

Āpplication : Soit $n \in \mathbb{N}^*$. Montrer que n(n+1) est pair.

2) Sans utiliser la table de vérité montrer que.

$$\left[(\bar{P} \Rightarrow Q) \land R \right] \Leftrightarrow \left[(\bar{P} \lor \bar{R}) \Rightarrow (Q \land R) \right].$$

3) La proposition : $P \wedge Q \Rightarrow \bar{P} \vee Q$ est-elle vraie?

Exercice 5.

1) Soit $a \in \mathbb{R}^+$. Montrer que:

 $\forall \epsilon > 0$, on a, $a \leq \epsilon \Rightarrow a = 0$.

- 2) Si on a, $a = 0.999... \Rightarrow a = 1$.
- 3) Trouver l'erreur:

Soit
$$a = 1$$
, on a, $a^2 = a$ et $a^2 - 1 = a - 1$ d'où $(a - 1)(a + 1) = a - 1$ donc $a + 1 = 1$ et alors $2 = 1$.

Exercice 6.

On appelle les nombres triangulaires, les sommes $U_n = \sum_{k=1}^n k$ et les nombres pyramidaux, les

sommes
$$P_n = \sum_{k=1}^n U_k$$
.

1) Montrer par récurrence que $\forall n \in \mathbb{N}^*$ on a $P_n = \frac{n(n+1)(n+2)}{6}$.

2) En déduire
$$\sum_{k=1}^{n} k(k+1)$$
, $\sum_{k=1}^{n} k^2$, $\prod_{k=1}^{n} e^{k^2}$.

Exercice 7.

Soit $n \in \mathbb{N}$, $\forall n \geq 2$, on a la proposition.

 $P: n^2 - 1$ n'est pas divisible par $8 \Rightarrow n$ est pair.

- 1) Définir la contraposée de P.
- 2) Démontrer qu'un entier naturel impair n s'ecrit sous la forme n=4k+r avec $k\in\mathbb{N},$ $r\in\{1,3\}.$
- 3) Prouver la contraposée de P. Que peut on conclure?

Exercice 8.

En utilisant un raisonnement par l'absurde, montrer que :

- 1) La longueur d'un rectangle d'aire égale à $170cm^2$ est supérieur à 13m.
- 2) Soient $a, b \in \mathbb{R}$) on a $a \neq -1$ et $b \neq -1 \Rightarrow a + b + ab \neq -1$.
- 3) Soit $n \in \mathbb{N}^*$ on a $\sqrt{n^2 + 1} \in \mathbb{N}$.

Exercices supplémentaires:

Exercice 9.

Considérons les propositions suivantes :

 $P: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}; \ x+y>0, \ Q: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}; \ x+y>0.$

 $R: \forall x \in \mathbb{R}, \forall y \in \mathbb{R}; \ x+y>0, \quad S: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}; \ y^2>x.$

Vérifier, si ces propositions sont vraies ou fausses et déterminer leurs négations.

Exercice 10.

Soit $n \in \mathbb{N}^*$.

- 1) Montrer que n^3 pair $\Rightarrow n$ est pair.
- 2) Montrer par l'absurde que $\sqrt[3]{4}$ est irrationnel.
- 3) Montrer que si $r \in \mathbb{Q}^*$ et $x \in \mathbb{Q}$ alors $rx \in \mathbb{Q}$.
- 4) En déduire que $\sqrt[3]{\frac{32}{27}}$ est irrationnel.

Exercice 11.

- 1) Démontrer par récurrence que $\forall n \geq 1$, on a $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.
- 2) Montrer que $\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$.
- 3) En déduire la somme des cubes des n premiers nombres impairs.

Exercice 12.

On pose pour tout $n \in \mathbb{N}^*$: $P_n = \prod_{k=1}^n (1 + \frac{1}{k})^k$.

- 1) Calculer P_1 , P_2 , P_3 .
- 2) Montrer que $P_n = \frac{(n+1)^n}{n!}$, en utilisant :
- i) Une démonstration par récurrence. ii) Calcul direct.

Exercice 13.

Soit $x \in \mathbb{R}^{*+}$. Montrer par récurrence que :

- 1) $\forall n \in \mathbb{N}^*$, on a $(1+x)^n \ge 1 + nx$.
- 2) $\forall n \in \mathbb{N}^*$, on a $\prod_{k=1}^n (1-x_k) \ge 1 \sum_{k=1}^n x_k$, où $x_i \in [0,1]$, $i = \overline{1,n}$.