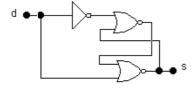

Contrôle de Structure Machine 2 Mercredi Le 30 Septembre 2020 : 9h à 10h 30 mn

Documents et calculatrices non autorisés.

Exercice 1:10 points

Soit le circuit combinatoire suivant :

- 1. Déterminer les expressions logiques des fonctions de sortie X, Y et Z.
- 2. Dresser la table de vérité des fonctions X, Y et Z en fonction des entrées A, B et C. (Dans la table de vérité veillez respecter l'ordre A, B, C puis X, Y Z)
- 3. Déterminer le rôle de ce circuit.


Exercice 2:7 points

En utilisant la méthode de Karnaugh simplifiez en somme de produits la fonction logique f définie par la table de Karnaugh suivante (N'oubliez pas de copier cette table et de mentionner les groupes) :

cd ab	00	0 1	11	10
00	1	1	0	1
01	1	1	0	1
11	0	1	0	0
10	1	1	0	1

Exercice 3:3 points

Soit le circuit séquentiel :

- (1) Quelle est la valeur de sortie S lorsque l'entrée d est à 1?
- (2) Quelle est la valeur de sortie S si on remplace les portes NOR (non-ou) par des portes NAND (non-et) en gardant toujours d=1?

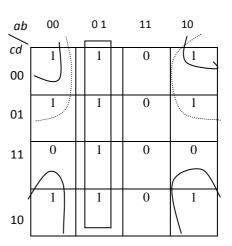
Bonne réussite

Solutionnaire du Contrôle de Structure Machine 2 : Octobre 2020

Exercice 1:10 points

1. Expressions logiques des fonctions de sortie :

$$X(A, B, C) = (B.C) \oplus A$$
 1.5
 $Y(A, B, C) = B \oplus C.$ 1.5
1.5


$$Z(A,B,C) = \overline{C}$$
.

2. Table de vérité

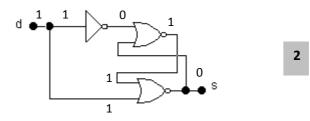
A	В	C	X	Y	Z
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

3. Rôle : Ce circuit est un incrémenteur car XYZ₂ =ABC₂ +1. **Exercice 2 : 7 points**

 $f(a,b,c,d) = \overline{a}.b + \overline{b}.\overline{c} + \overline{b}.\overline{d}.$

1

3+3


1.5

1.5

1.5

Exercice 3:3 points

Le comportement du circuit est présenté par la figure ci-dessous.

Le circuit a exactement le même comportement que le précédent.

1