Série TD N° 02

CALCUL VECTORIEL - COORDONNEES

Exercice 1

 \vec{l} , \vec{j} et \vec{k} étant les vecteurs unitaires des axes rectangulaire Oxyz, on considère les vecteurs

$$\overrightarrow{r_1} = \overrightarrow{i} + 3\overrightarrow{j} - 2\overrightarrow{k}$$
 $\overrightarrow{r_2} = 4\overrightarrow{i} - 2\overrightarrow{j} + 2\overrightarrow{k}$ et $\overrightarrow{r_3} = 3\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$

$$\vec{r_2} = 4\vec{\imath} - 2\vec{\jmath} + 2\vec{k}$$

$$\overrightarrow{r_3} = 3\overrightarrow{i} - \overrightarrow{j} + 2\overline{k}$$

- 1. Calculer leurs modules.
- 2. Calculer les composantes et les modules des vecteurs.
- 3. $\vec{A} = \overrightarrow{r_1} + \overrightarrow{r_2} + \overrightarrow{r_3}$ et $\vec{B} = \overrightarrow{r_1} + \overrightarrow{r_2} \overrightarrow{r_3}$ 4. Calculer les produits $\overrightarrow{r_1} \cdot \overrightarrow{r_2}$ et $\overrightarrow{r_1} \wedge \overrightarrow{r_2}$, que représente ces deux produit ?
- 5. Déterminer l'équation du plan (p) passant par le point M (+2,+2,+1) et perpendiculaire au vecteur $\vec{A} = 3\vec{\imath} - 2\vec{\imath} + \vec{k}$

Exercice 2

On donne les trois vecteurs $\overrightarrow{V_1}(1, 1, 0)$, $\overrightarrow{V_2}(0, 1, 0)$ et $\overrightarrow{V_3}(0, 0, 2)$.

- 1. Calculer les normes $\|\overrightarrow{V_1}\|$, $\|\overrightarrow{V_2}\|$ et $\|\overrightarrow{V_3}\|$, en déduire les vecteurs unitaires $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ et $\overrightarrow{v_3}$ des directions respectivement de $\overrightarrow{V_1}$, $\overrightarrow{V_2}$ et de $\overrightarrow{V_3}$.
- 2. Calculer $\cos{(\overrightarrow{v_1}, \overrightarrow{v_2})}$, sachant que l'angle correspondant est compris entre 0 et π .
- 3. Calculer le produit mixte $\overrightarrow{v_1}$. $(\overrightarrow{v_2} \wedge \overrightarrow{v_3})$. Que représente ce produit ?

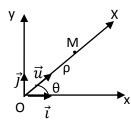
Exercice 3

Soit un vecteur $\vec{U} = (t\vec{i} + 3\vec{i})/(\sqrt{t^2 + 9})$

- 1. Montrer que \vec{U} est un vecteur unitaire?
- 2. Calculer sa dérivée par rapport au temps ?

Exercice 4

- A) Un point matériel M est repéré par ses coordonnées cartésiennes (x,y).
 - 1. Ecrire x et y en fonction des coordonnées polaires ρ et θ .
 - 2. Donner l'expression du vecteur unitaire \vec{u} en fonction des vecteurs unitaires \vec{i} et \vec{j} .
 - 3. Calculer $d\vec{u}/_{d\theta}$ que représente ce vecteur ?
- B) Si la position du point M est donnée par $\{\overrightarrow{OM}=t^2\vec{u}\ (\omega \text{constante}).$ Trouver l'expression du **vecteur vitesse** \vec{v} en coordonnées polaires.



Exercice 5

Un point matériel M est repéré par ses coordonnées cartésiennes (x,y).

- 1. Trouver l'expression du vecteur position \overrightarrow{OM} en coordonnées polaires.
- 2. Trouver l'expression du vecteur vitesse \vec{v} du point M en coordonnées polaires.
- 3. Donner l'expression du vecteur $\vec{A} = 2x\vec{\imath} y\vec{\jmath}$ en coordonnées polaires.

Exercice 6

- 1. Trouver les relations reliant :
 - Les coordonnées cartésiennes et les coordonnées cylindriques.
 - Les coordonnées cartésiennes et les coordonnées sphériques.
- 2. Trouver les vecteurs de déplacement élémentaires en coordonnées cylindriques et sphériques et déduire les vecteurs unitaires de ces deux dernières bases en fonction des vecteurs unitaires $(\vec{l}, \vec{j}, \vec{k})$.
- 3. Calculer la surface et le volume de la sphère et du cylindre.

Exercice 7

La différentielle du vecteur \vec{r} , $d\vec{r} = d\vec{l} = dx\vec{i} + dy\vec{j} + dz\vec{k}$ peut se mettre en coordonnées cylindriques sous la forme $d\vec{r} = \frac{\partial \vec{r}}{\partial \rho} d\rho + \frac{\partial \vec{r}}{\partial \theta} d\theta + \frac{\partial \vec{r}}{\partial z} dz$.

- 1. Evaluer en utilisant les formules de passage entre les deux systèmes de coordonnées, les vecteurs $\frac{\partial \vec{r}}{\partial \rho}$, $\frac{\partial \vec{r}}{\partial \theta}$ et $\frac{\partial \vec{r}}{\partial z}$.
- 2. En déduire les vecteurs unitaires $\overrightarrow{U_{\rho}}$, $\overrightarrow{U_{\theta}}$ et $\overrightarrow{U_{z}}$ (coordonnées cylindriques) en fonction de \overrightarrow{l} , \overrightarrow{l} et \overrightarrow{k} (coordonnées cartésiennes), vérifier qu'ils sont orthogonaux.
- 3. Ecrire $\vec{A} = 2x\vec{i} + y\vec{j} 2z\vec{k}$ en coordonnées cylindriques.

Exercice supplémentaire:

Déterminer les coordonnées cylindriques puis sphériques du point M $(2, 2\sqrt{3}, 4)$?