TD n° 1 de Mécanique Analyse dimensionnelles et calcul d'incertitudes

A. Rappel mathématique:

I. Les dérivées des fonctions usuelles

Domaine de définition Df	Fonction f(x)	Domaine de dérivabilité Df'	Fonction dérivée f'(x)	
R	f(x) = k	R	f'(x)=0	
R	f(x) = ax	R	f'(x) = a	
\mathbb{R} , $n \in \mathbb{N}$	$f(x) = x^n$	\mathbb{R}	$f'(x) = nx^{n-1}$	
\mathbb{R}_+ , $n \in \mathbb{N}$	$f(x) = \sqrt[n]{x}$	\mathbb{R}_+^*	$f'(x) = \frac{1}{n\sqrt[n]{x^{n-1}}}$	
\mathbb{R}^* , $n \in \mathbb{N}$	$f(x) = \frac{1}{x^n}$	ℝ*	$f'(x) = -\frac{n}{x^{n-1}}$	
R	$f(x) = a^x$	R	$f'(x) = a^x \ln a$	
\mathbb{R}^*	$f(x) = \log_{\mathbf{a}} x $	ℝ*	$f'(x) = \frac{1}{x \ln a}$	
R	$f(x) = \sin x$	R	$f'(x) = \cos x$	
R	$f(x) = \cos x$	R	$f'(x) = -\sin x$	
$\mathbb{R}\backslash\left\{k\frac{\pi}{2};k\in\mathbb{Z}\right\}$	$f(x) = \tan x$	$\mathbb{R}\backslash\left\{k\frac{\pi}{2};k\in\mathbb{Z}\right\}$	$f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$	
[-1;1]	$f(x) = \arcsin x$]-1;1[$f'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$ $f'(x) = \frac{1}{\sqrt{1 - x^2}}$	

Opération	Dérivée		
f+g	f'+g'		
$f \cdot g$	$f' \cdot g + f \cdot g'$		
<u>f</u>	$\underline{f' \cdot g - f \cdot g'}$		
g	g^2		
$g \circ f$	$f' \times g' \circ f$		
1	u'		
\overline{u}	$-\frac{u}{u^2}$		
$\frac{u}{u^n}$	$-\frac{u^2}{u^2}$ $nu'u^{n-1}$		
/ - -	u'		
\sqrt{u}	$2\sqrt{u}$		
e^{u}	$u'e^u$		
1-7-1	u'		
$\ln(u)$	$\frac{\overline{u}}{u}$		
$\sin(u)$	$u'\cos(u)$		
$\cos(u)$	$-u'\sin(u)$		

II. Les primitives des fonctions usuelles

Fonction $f(x)$	Primitive $F(x)$	Domaine de validité R R R* R*	
a (réel donné)	ax		
$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1}$		
$\frac{1}{x^n}, n \in \mathbb{N}^* \smallsetminus \{-1\}$	$\frac{-1}{(n-1)x^{n-1}}$		
$\frac{1}{\sqrt{x}}$,	$2\sqrt{x}$		
$x^\alpha,\alpha\in\mathbb{R}\smallsetminus\mathbb{Z}$	$\frac{x^{\alpha+1}}{\alpha+1}$		
$\frac{1}{x}$	$\ln(x)$	R*	
e^x	e^x	R	
$\cos(x)$	sin(x)	R	
$\sin(x)$	$-\cos(x)$	R	
$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	tan(x)	$x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$	
$\frac{1}{1+x^2}$	$\arctan(x)$	R	
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$]-1,1[
$\frac{-1}{\sqrt{1-x^2}}$	arccos(x)]-1,1[
$a^x, a \in \mathbb{R}_+^* \smallsetminus \{1\}$	$\frac{a^x}{\ln(a)}$	R	

Soit $u:I \to \mathbb{R}$ une fonction continue et dérivable.

Fonction	Primitive $\frac{u^{\alpha+1}}{\alpha+1}$	
$u'u^\alpha,\ \alpha\in\mathbb{R}$		
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	
$\frac{u'}{u}$	$\ln(u)$	
$u'e^u$	e^{u}	
$u'\cos(u)$	$\sin(u)$	
$u'\sin(u)$	$-\cos(u)$	
$\frac{u'}{\cos^2(u)} = u' \big(1 + \tan^2(u)\big)$	tan(u)	
$\frac{u'}{1+u^2}$	arctan(u)	
$\frac{u'}{\sqrt{1-u^2}}$	arcsin(u)	

B. Exercices:

Exercice 1

Complétez le tableau suivant :

Grandeur physique	Symbole grandeur	de	la	Formule utilisée	Dimension	Unité (SI)
Surface						
Volume						
Masse volumique						
Fréquence						
Vitesse linéaire						
Vitesse angulaire						
Accélération linéaire						
Accélération angulaire						
Force						
Travail						
Energie						
Puissance						
Pression						

Exercice 2

a- L'équation caractéristique d'un fluide à température constante est de la forme suivante $\left(p + \frac{a}{V^2}\right)(V - b) = c$

Ou p est la pression et V est le volume.

Déterminer les dimensions des grandeurs a, b et c.

b- Lorsque la bille est lâchée sans vitesse initiale à l'instant t = 0, sa vitesse s'écrit pour t > 0 par: $v = a\left(1 - exp\left(-\frac{t}{b}\right)\right)$ Où a et b sont deux grandeurs qui dépendent des caractéristiques du fluide.

Quelles sont les dimensions de a et b?

Exercice 3

dimensionnellement? Les formules suivantes sont-elles valides Faites une analyse dimensionnelle pour confirmer ou rectifier.

- $F = \frac{Gm}{r}$, tels que : F est une force, G une constante exprimé en $\frac{m^3}{ka s^2}$, m une masse et r une longueur.
- 2- $p = \rho g h_1 + h_2 F$ tels que : P : une pression, g : l'accélération de la pesanteur, h_1 et h_2 : hauteurs et F: une force
- 3- $\theta = \frac{b \sin(a)}{t \cos(c)}$, tels que : b et t ont une dimension d'une longueur.

Exercice 4

Des expériences ont montré que la vitesse v du son dans un gaz n'est fonction que de la masse volumique ρ et du coefficient de compressibilité χ .

Quelle est la loi qui donne la vitesse v en fonction des caractéristiques du gaz, on rappelle que χ est homogène à l'inverse d'une pression.

Exercice 5

Un pendule formé d'une boule (sphère) de rayon R et de masse m. L'étude de l'effet de l'air sur ce pendule montre que sa période dépend d'une constante k, du coefficient de viscosité de l'air η , du rayon de la boule Ret de sa masse volumique ρ .

1- Trouvez l'expression de la période en la supposant de la forme :

$$T = K\eta^x R^y \rho^z$$
 avec $[\eta] = ML^{-1}T^{-1}$

2- Déterminez l'incertitude relative sur T en fonction de $\Delta \eta$, ΔR , Δm .

Exercice 6

L'expression d'une grandeur physique G est :

$$G = \frac{T^2 ga}{4\pi^2} - a^2$$

T représente le temps, a est une longueur et g est l'accélération de la pesanteur.

- 1- Déterminer la dimension de *G* et déduire son unité.
- 2- Calculer l'incertitude absolue ΔG en fonction de ΔT et Δa .

Exercice 7

La résistivité électrique d'un fil électrique en cuivre, de diamètre D, de longueur L et de résistivité R est donnée par la formule suivante :

$$\rho = \frac{\pi R D^2}{4L}$$

Donnez l'incertitude sur la résistivité électrique ρ en utilisant <u>la méthode de la différentielle totale</u> et <u>la méthode logarithmique</u>.

On donne pour application numérique :

R=0.4562 \pm 0.0002 Ω L=2.000 \pm 0.0001 m et D=0.30 \pm 0.01m.

Calculer l'incertitude absolue $\Delta \rho$ et donnez la précision $\Delta \rho / \rho$.

Exercice supplémentaire:

La hauteur ${\bf H}$ d'un liquide de masse ${\bf M}$ contenu dans un cylindre de rayon ${\bf R}$ est donnée par la relation :

$$H = \frac{(2.\sigma.\cos\alpha)}{(R.g.\rho)}$$

Ou α est l'angle de contact liquide-cylindre, ρ la masse volumique du liquide et g l'accélération de pesanteur.

- 1- En utilisant les équations aux dimensions, trouver la dimension de σ .
- 2- Déterminer l'incertitude relative sur σ en fonction des incertitudes absolues ΔR , Δg , ΔM et $\Delta \alpha$.