$TD N^{o}3$

Exercice 1: Déterminer le domaine de définition des fonctions numériques f de la variable réelle x définies par:

1.
$$f(x) = \frac{2x-1}{\sqrt{4-3x^2}}$$
, 2. $f(x) = \sqrt[3]{x-1}$,

2.
$$f(x) = \sqrt[3]{x-1}$$
,

3.
$$f(x) = \sqrt[4]{x^2 + 3x + 2}$$
,

$$4. \ f(x) = \tan(2x)$$

5.
$$f(x) = \frac{\ln(2+x)}{\sqrt{4-x^2}}$$

6.
$$f(x) = e^{\frac{x^2+1}{x^2-1}}$$

7.
$$f(x) = ln(e^x + 1)$$

4.
$$f(x) = \tan(2x)$$
, 5. $f(x) = \frac{\ln(2+x)}{\sqrt{4-x^2}}$, 6. $f(x) = e^{\frac{x^2+1}{x^2-1}}$.

7. $f(x) = \ln(e^x + 1)$, 8. $f(x) = x^{-1}(\sqrt{|1+x|-1})$, 9. $f(x) = \frac{\cos x}{\sin x - \cos x}$

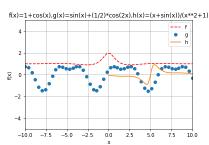
9.
$$f(x) = \frac{\cos x}{\sin x - \cos x}$$
.

Exercice 2:

1. Déterminer le domaine de définition et étudier la parité des fonctions définies par les expressions suivantes.

(a)
$$f_1(x) = \frac{e^x - 1}{e^x + 1}$$
, (b) $f_2(x) = \ln(\sqrt{x^2 + 1} - x)$.

2. Dire si les fonctions représentées par les graphes suivants sont paires, impaires ou ni l'une ni l'autre.



Exercice 3: Soit la fonction numérique f de la variable réelle x définie par

$$f(x) = \sin x - \cos(2x).$$

- 1. Résoudre dans \mathbb{R} l'équation f(x) = 0. Déterminer la période.
- 2. Montrer que la fonction $g: x \mapsto x E(x)$ est périodique de période 1.
- 3. Soit g_1 la restriction de $g \ge [-2, 2]$. Montrer que g_1 est une fonction affine par intervalles et construire sa représentation graphique.

Exercice 4:

- 1. Soit x_1 et x_2 deux nombres réels, écrire le nombre $2(x_1^2 + x_2x_1 + x_2^2)$ sous la forme d'une somme de trois carrés.
- 2. On considère la fonction numérique f de la variable réelle x définie par

$$f(x) = x^3 + 2x - 3.$$

1

- Ecrire le taux de variation de f entre les valeurs x_1 et x_2 où $(x_1 \neq x_2)$.
- Déduire de ce qui précède le sens de variation de la fonction f.

Exercice 5 Une voie de chemin de fer rectiligne relie une ville A à une ville B distante de 100km, un train dont la vitesse maximale est 150km/h fait le trajet d'un mouvement uniforme.

Représenter graphiquement le temps y du trajet en fonction de la vitesse x du train. (1cm représente sur Ox 10km/h, sur Oy 1h.)

Exercice 6: Calculer les limites suivantes.

1.
$$\lim_{x \to +\infty} \frac{x - \sqrt{x}}{\ln x + x}$$
,

2.
$$\lim_{x \to 0^+} \frac{x+2}{x^2 \ln(x)}$$
,

3.
$$\lim_{x \to 1} \frac{1}{x - 1} - \frac{2}{x^2 - 1}$$

4.
$$\lim_{x \to 2^+} (x-2)^2 \ln(x^3-8)$$

5.
$$\lim_{x \to \pm \infty} x(\sqrt{x^2 + 1} - x)$$

6.
$$\lim_{x \to +\infty} E(x) \cos x$$
,

7.
$$\lim_{x \to 0} \frac{\tan(2x)}{\ln(1+x)}$$
,

$$8. \lim_{x \to 0} \frac{\sin(2x)}{\sin(3x)},$$

9.
$$\lim_{x \to 0} \frac{x \sin(x)}{1 - \cos(x)}$$

10.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{x - 1}$$

11.
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x+1}$$
,

12.
$$\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$$

1.
$$\lim_{x \to +\infty} \frac{x - \sqrt{x}}{\ln x + x}$$
, 2. $\lim_{x \to 0^+} \frac{x + 2}{x^2 \ln(x)}$, 3. $\lim_{x \to 1} \frac{1}{x - 1} - \frac{2}{x^2 - 1}$, 4. $\lim_{x \to 2^+} (x - 2)^2 \ln(x^3 - 8)$, 5. $\lim_{x \to \pm \infty} x(\sqrt{x^2 + 1} - x)$, 6. $\lim_{x \to +\infty} E(x) \cos x$, 7. $\lim_{x \to 0} \frac{\tan(2x)}{\ln(1 + x)}$, 8. $\lim_{x \to 0} \frac{\sin(2x)}{\sin(3x)}$, 9. $\lim_{x \to 0} \frac{x \sin(x)}{1 - \cos(x)}$, 10. $\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{x - 1}$, 11. $\lim_{x \to \infty} \left(\frac{2x + 3}{2x + 1}\right)^{x + 1}$, 12. $\lim_{x \to +\infty} \frac{x \cos(e^x)}{x^2 + 1}$, 13. $\lim_{x \to 1} \frac{(x^2)^{\frac{1}{3}} - 2x^{\frac{1}{3}} + 1}{(x - 1)^2}$, 14. $\lim_{x \to \frac{\pi}{2}} \frac{\pi}{\cos(x)}$.

14.
$$\lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\cos(x)}$$

Exercice 7

- 1. Montrer que pour tout réel x: $3 \le 5 + 2\sin(e^x) \le 7$.
- 2. Soit f une fonction définie sur \mathbb{R} par:

$$f(x) = \frac{x}{5 + 3\sin(e^x)}.$$

2

En déduire $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$.