Université Abou Bekr Belkaid Tlemcen Faculté des Sciences Département de Mathématiques

Année Universitaire 2018-2019

1ère Année LMD Mathématique et Informatique

Algèbre 1

Corrigé de la fiche de TD 4 : Structures Algèbriques

Exercice 1:

Soit (G,\star) un groupe qui admet e comme élément neutre.

- I. Montrer que:
 - 1. $\forall a \in G : a \star x = a \Leftrightarrow x = e$.
 - 2. $\forall a \in G : x \star a = a \Leftrightarrow x = e$.
- II. Trouver tout les éléments x de G qui satisfait la relation $x \star x = x$.

Correction Exercice 1

I. Soit (G,\star) un groupe qui admet e comme élément neutre.

a. " \Rightarrow ": Soit $a \in G$: $a \star x = a$. Puisque G est un groupe alors pour tout a dans G il existe son symétrique a' tel que $a' \star a = e$. Alors

$$a \star x = a \Rightarrow a' \star a \star x = a' \star a.$$

$$\Rightarrow x = e$$
.

" \Leftarrow ": Soit x = e. Alors

$$\forall a \in G : a \star x = a \star e = a.$$

- b. De même pour $\forall a \in G : x \star a = a \Leftrightarrow x = e$, il suffit de reprendre la même démonstration.
- II. Le seul x qui satisfait la relation $x \star x = x$ est x = e.

Exercice 2:

On définit dans l'ensemble $\mathbb{Q} \setminus \{-\frac{1}{2}\}$, la loi \bigstar comme suit :

$$\forall a, b \in \mathbb{Q} \setminus \left\{ -\frac{1}{2} \right\} : a \bigstar b = a + b + 2ab.$$

Montrer que $(\mathbb{Q} \setminus \{-\frac{1}{2}\}, \bigstar)$ est un groupe abélien.

Correction Exercice 2 Montrer que $(\mathbb{Q} \setminus \{-\frac{1}{2}\}, \bigstar)$ est un groupe abélien.

1. \bigstar est associative :

Prenons $a, b, c \in \mathbb{Q} \setminus \left\{-\frac{1}{2}\right\}$:

$$a \bigstar (b \bigstar c) = a \bigstar (b + c + 2bc) = a + b + c + 2bc + 2a(b + c + 2bc).$$

$$(a \bigstar b) \bigstar c = (a + b + 2ab) \bigstar c = a + b + 2ab + c + 2c(a + b + 2ab).$$

Donc $\forall a, b, c \in \mathbb{Q} \setminus \{-\frac{1}{2}\} : a \bigstar (b \bigstar c) = (a \bigstar b) \bigstar c \Rightarrow \bigstar$ est associative.

2. L'élément neutre pour ★:

Il suffit de résoudre $a \bigstar x = a \Rightarrow a + x + 2ax = a \Rightarrow x(1+2a) = 0 \Rightarrow x = 0$, car $a \neq -\frac{1}{2}$. Donc e = 0 est l'élément neutre.

Donc e=0 est l'élément neutre. 3. Tout élément a de $\mathbb{Q}\setminus \left\{-\frac{1}{2}\right\}$ admet un symétrique a' :

a' satisfait $a \bigstar a' = e \Rightarrow a + a' + 2aa' = 0 \Rightarrow a'(1+2a) = -a \Rightarrow a' = \frac{-a}{1+2a}$.

En plus, ★ est commutative car:

$$a \bigstar b = a + b + 2ab = b + a + 2ba = b \bigstar a.$$

Conclusion : $(\mathbb{Q} \setminus \{-\frac{1}{2}\}, \bigstar)$ est un groupe abélien.

Exercice 3:

Soit (G, .) un groupe. On appelle le centre de G l'ensemble

$$C = \{c \in G/x.c = c.x, \forall x \in G\}.$$

Montrer que C est un sous-groupe de G.

Correction Exercice 3

1. $e \in G$ vérifie $\forall x \in G : x.e = e.x \Rightarrow e \in C \Rightarrow C \neq \emptyset$.

2. Soient $c_1, c_2 \in C$. Montrons que $c_1.c_2 \in C$ i.e $(c_1.c_2).x = x.(c_1.c_2), \forall x \in G$.

$$(c_1.c_2).x = c_1.(c_2.x)$$

$$= c_1.(x.c_2)$$

$$= (c_1.x).c_2$$

$$= (x.c_1).c_2$$

$$= x.(c_1.c_2)$$

Donc x commute avec $c_1.c_2 \Rightarrow c_1.c_2 \in C$.

3. Soit $c \in C$. Montrons que $c^{-1} \in C$.

$$c.x = x.c \Rightarrow c^{-1}.c.x = c^{-1}.x.c$$

 $\Rightarrow x = c^{-1}.x.c$
 $\Rightarrow x.c^{-1} = c^{-1}.x$

Donc x commute avec $c^{-1} \Rightarrow c^{-1} \in C$.

Conclusion : C est un sous-groupe de G.

Exercice 4:

Soit $f: G_1 \to G_2$ un morphisme de groupe surjectif.

Montrer que si $(G_1, .)$ est commutatif alors $(G_2, .)$ est commutatif.

Solution Exercice 4

Il suffit de montrer que :

$$\forall y_1, y_2 \in G_2 : y_1.y_2 = y_2.y_1.$$

Puisque f est surjective alors $\forall y_1, y_2 \in G_2, \exists x_1, x_2 \in G_1$ tels que $y_1 = f(x_1)$ et $y_2 = f(x_2)$. $y_1.y_2 = f(x_1).f(x_2) = f(x_1.x_2)$ car f est morphisme. Le fait que G_1 est commutatif alors $\forall x_1x_2 \in G_1 : x_1.x_2 = x_2.x_1$. Donc on a :

$$y_1.y_2 = f(x_1).f(x_2) = f(x_1.x_2) = f(x_2.x_1) = f(x_2).f(x_1) = y_2.y_1.$$

Exercice 5:

Dans $\mathbb{Z}/5\mathbb{Z}$, on définit les deux lois suivantes : $\forall \overline{x}, \overline{y} \in \mathbb{Z}/5\mathbb{Z}$:

$$\left\{ \begin{array}{l} \overline{x} \dot{+} \overline{y} = \overline{x+y} \\ \overline{x} \dot{\times} \overline{y} = \overline{x \times y} \end{array} \right.$$

- 1. Tracer les tableaux de \dotplus et $\dot{\times}$.
- 2. Montrer que $(\mathbb{Z}/5\mathbb{Z},\dot{+},\dot{\times})$ est un corps commutatif.

Correction Exercice 5

1. Les tableaux de \dotplus et $\dot{\times}$:

÷	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- 2. Montrons que $(\mathbb{Z}/5\mathbb{Z}, \dot{+}, \dot{\times})$ est un corps commutatif :
- a. $(\mathbb{Z}/5\mathbb{Z},\dot{+})$ est un groupe abélien car :
- + est associative : $\forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}/5\mathbb{Z}$:

$$(\overline{x} + \overline{y}) + \overline{z} = (\overline{x+y}) + \overline{z} = \overline{x+y+z} \text{ et } \overline{x} + (\overline{y} + \overline{z}) = \overline{x} + (\overline{y+z}) = \overline{x+y+z}.$$

D'après le tableau de $\dot{+}$, on remarque que l'élément neutre est e=0, et que pour chaque élément \bar{x} de $\mathbb{Z}/5\mathbb{Z}$, il existe un symétrique. Enfin, on peut vérifier facilement que $\dot{+}$ est commutative.

b. $\dot{\times}$ est associative car :

 $\forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}/5\mathbb{Z}$:

$$(\overline{x} \dot{\times} \overline{y}) \dot{\times} \overline{z} = (\overline{x \times y}) \dot{\times} \overline{z} = \overline{x \times y \times z} \text{ et } \overline{x} \dot{\times} (\overline{y} \dot{\times} \overline{z}) = \overline{x} \dot{\times} (\overline{y \times z}) = \overline{x \times y \times z}.$$

c. \times est distributive par rapport à \dotplus car :

 $\forall \overline{x}, \overline{y}, \overline{z} \in \mathbb{Z}/5\mathbb{Z}$:

$$\overline{x} \dot{\times} (\overline{y} \dot{+} \overline{z}) = \overline{x} \dot{\times} (\overline{y+z}) = \overline{x} \times (y+z) = (\overline{x} \times y) \dot{+} (\overline{x} \times \overline{z}) = (\overline{x} \dot{\times} \overline{y}) \dot{+} (\overline{x} \dot{\times} \overline{z}).$$

De la même manière on montre que : $(\overline{x} + \overline{y}) \times \overline{z} = (\overline{x} \times \overline{z}) + (\overline{y} \times \overline{z}) \Rightarrow (\mathbb{Z}/5\mathbb{Z}, +, \times)$ un anneau. En plus, la loi \times admet un élément unité 1 ce qui implique que l'anneau est unitaire. Or, chaque élément non nul, admet un inverse (voir tableau de \times), alors $(\mathbb{Z}/5\mathbb{Z}, +, \times)$ est un corps commutatif puisque \times est commutative.