<u>Université de Tlemcen :: Faculté des sciences :: Département de mathématiques</u> 2^{ème} année LMD MI - Mathématiques - (Semestre 3)

Epreuve finale de logique mathématique

24 Janvier 2018 <u>Durée</u> : 1 h 30 mn

Questions de cours

- 1. Quelle différence y a-t-il entre implication matérielle et implication de cause à effet ?
- 2. On dit qu'un énoncé A est une caractérisation d'un énoncé B ; expliquer et citer un exemple.
- 3. Citer un exemple familier qui justifie la définition de l'implication matérielle.
- 4. A quoi servent les axiomes de Peano.
- 5. Citer la définition de la barre de Pierce. Quel nom lui donnons-nous en structure machine ?
- 6. Quelle différence y a-t-il entre une démonstration par récurrence simple et une démonstration par récurrence généralisée ?
- 7. Enoncer les deux lois de De Morgan.
- 8. On parle de propriété d'<u>involution</u> concernant le connecteur logique « négation » et de propriété d'idempotence concernant le connecteur logique « conjonction » ; expliquer pourquoi.
- 9. Enoncer un paradoxe de votre choix.

Exercice 1

I – Soit la formule propositionnelle

$$P := ((a \Rightarrow b) \Rightarrow a) \Rightarrow a$$

où a et b sont des atomes.

- 1. Citer une construction de la formule P.
- 2. Représenter cette construction en arbre.
- 3. Quel est l'ordre de la formule P ? Ecrire clairement la définition.
- 4. Etablir que \models P.

II – Soient S et T deux formules propositionnelles ; établir que

$$\models ((S \Rightarrow T) \Rightarrow S) \Rightarrow S$$

$$(S \Rightarrow T) \Rightarrow S \vdash S$$

Exercice 2

Soit A(.) un ion à une place, de champ $\Omega := \{a, b, c\}$, et soit B, une formule propositionnelle. Considérons la formule prédicative

$$P := \forall x (A(x) \Rightarrow B) \Rightarrow A(x)$$

- 1. Etudier la nature des deux occurrences de variable.
- 2. Enumérer les entrées de la table des valeurs de la formule P.
- 3. De combien de lignes, la table des valeurs de la formule P, est-elle formée ? Expliquer pourquoi.
- 4. Effectuer l'analyse évaluante d'une ligne de cette table, de votre choix.
- 5. La formule P n'est pas close. Expliquer pourquoi.
- 6. Quelles sont les clôtures possibles de P?

Corrigé de l'épreuve finale de logique mathématique

Exercice 1

I-

1. La séquence de formules suivantes est une construction de la formule P.

 $A_1 := a$ (atome)

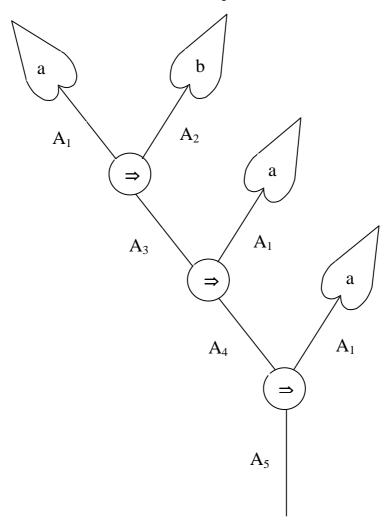
 $A_2 := b$ (atome)

 $A_3 := A_1 \Rightarrow A_2$

 $A_4 := A_3 \Rightarrow A_1$

 $A_5 := A_4 \Rightarrow A_1$

2. Représentation arborescente de la construction précédente :



N.B. La lecture est effectuée de gauche à droite.

3. L'ordre de la formule est 3. Il s'agit du <u>nombre d'occurrences</u> des connecteurs logiques figurant dans la formule P (trois fois l'implication matérielle.)

4. Dressons la table des valeurs de la formule P.

a	b	a⇒b	$(a \Rightarrow b) \Rightarrow a$	P
0	0	1	0	1
0	1	1	0	1
1	0	0	1	1
1	1	1	1	1

Selon cette table, la formule P est valide.

II- Posons

$$Q := ((S \Rightarrow T) \Rightarrow S) \Rightarrow S$$

La formule Q est obtenue, en remplaçant dans la formule P, l'atome a par la formule A et l'atome b par la formule B. La formule P étant valide, la formule Q l'est également, en vertu du théorème de substitution.

Montrons que la formule S est une déduction formelle de la formule $(S \Rightarrow T) \Rightarrow S$. Considérons en effet la séquence de formules suivantes :

$$F_1 := ((S \Rightarrow T) \Rightarrow S) \Rightarrow S$$
 (formule valide)
 $F_2 := (S \Rightarrow T) \Rightarrow S$ (formule hypothèse)
 $F_3 := S$ (m.-p. (F_2, F_1))

Exercice 2

1. La première occurrence de x est liée par le quanteur existentiel et la seconde occurrence est libre. Pour éviter la confusion, réécrivons la formule P comme suit :

$$P := \forall x (A(x) \Rightarrow B) \Rightarrow A(y)$$

- 2. La table des valeurs de la formule prédicative P admet en entrée :
 - Les deux valeurs logiques affectées à tour de rôle à B.
 - Les trois éléments de Ω , attribués à tour de rôle à y.
 - Les huit fonctions logiques associées à l'ion A(.) et au domaine Ω .
- 3. D'après le principe fondamental d'arithmétique, la table des valeurs de P est formée de

$$2 * 3 * 8 = 48$$
 lignes.

4. Affectons à B, la valeur logique 0, attribuons à y, l'élément b, de Ω et associons à l'ion A(.), la fonction logique suivante :

$$\varphi(t) := \begin{cases} 0 & \text{si } t = a \\ 0 & \text{si } t = b \\ 1 & \text{si } t = c \end{cases}$$

La valeur logique de l'ion A(y) est $\phi(b)$, c'est à dire 0. Passons en revue les diverses interprétations de l'ion $A(u) \Rightarrow B$:

u	A(u)	В	$A(u) \Rightarrow B$
a	0	0	1
b	0	0	1
c	1	0	0

La valeur logique de l'ion $\forall x (A(x) \Rightarrow B)$ est donc 0 et celle du prédicat P est 1.

- 5. La formule P n'est pas close car elle contient une occurrence libre de variable.
- 6. On peut clôturer la formule P de quatre manières différentes, à savoir :

$$\forall x (A(x) \Rightarrow B) \Rightarrow \forall y A(y)$$

$$\forall y [\forall x (A(x) \Rightarrow B) \Rightarrow A(y)]$$

$$\forall x (A(x) \Rightarrow B) \Rightarrow \exists y A(y)$$

$$\exists y [\forall x (A(x) \Rightarrow B) \Rightarrow A(y)]$$

Questions de cours

- 1. Par implication matérielle on sous-entend le connecteur, la fonction booléenne « implication », admettant les quatre interprétations définies par la table de valeurs. L'implication de cause à effet, par contre, admet une seule interprétation ; c'est la notion d'implication utilisée dans une démonstration déductive.
- 2. Dire que l'énoncé A est une caractérisation de l'énoncé B signifie que A entraîne B et que B entraîne A. Comme exemple, citons le fait qu'une suite réelle est convergente dans R est une caractérisation du fait que la suite soit de Cauchy. C'est dans MP1, page 95.
- 3. Un exemple familier justifiant la définition de l'implication matérielle est décrit dans MP1, pages 32, 33.
- 4. Les axiomes de Peano (MP1, pages 29, 30) permettent de construire l'ensemble des entiers naturels de manière axiomatique.
- 5. La barre de Peirce est définie dans MP1, page 41. En structure machine on parle de « NOR » pour désigner cette fonction booléenne.
- 6. Les deux méthodes de démonstration par récurrence sont décrites dans MP1, pages 96, ..., 100.
- 7. C'est dans MP1, en bas de la page 40.
- 8. Voir MP1, page 40.
- 9. Voir MP1, pages 107, ..., 112.