Faculté des Sciences Dept. Mathématiques Tlemcen

Epreuve finale de Topologie (Durée 1h30)

Exercice1

On définit sur C([0,1],R), muni de la convergence uniforme ($||u|| = \sup_{x \in [0,1]} |u(x)|$ pour $u \in C([0,1],R)$), la forme linéaire

$$\Lambda(u) = \int_{0}^{\frac{1}{2}} u(t)dt - \int_{\frac{1}{2}}^{1} u(t)dt \quad , \ u \in C([0,1], R).$$

- a) Montrer que l'application Λ est une forme linéaire continue et que $\|\Lambda\| \leq 1$.
 - b) Montrer que $\|\Lambda\| = 1$.

Indication : on pourra calculer pour $n \geq 3$, $u(u_n)$, avec u_n défini par

$$u_n = \begin{cases} 1 & \text{sur } \left[0, \frac{1}{2} - \frac{1}{n}\right] \\ -1 & \text{sur } \left[\frac{1}{2} + \frac{1}{n}\right] \\ \text{affine et continue sur } \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}\right]. \end{cases}$$

Exercice2

Soit (X, d) un espace métrique et $(K_n)_{n \in \mathbb{N}}$ une suite décroissante de fermés tous non vides tels que K_0 est compact.

- 1) Montrer que K_n est compact pour tout $n \in N$.
- 2) Montrer que $K = \bigcap_{n \in N} K_n \neq \phi$.
- 3) Soit U un ouvert contenant K. Montrer qu'il existe un $n \in N$ tel que $K_n \subset U$.

Exercice3

Soit $f:(X,d)\to (Y,D)$ une application entre deux espaces métriques.

- 1) Montrer que si f est uniformément continue l'image d'une suite de Cauchy de X par f est une suite Cauchy de Y.
- 2) On suppose que f est un homéomorphisme uniformément continu. Montrer que si Y est complet, X l'est aussi.

1 Correction

Exercice1

a) Λ est linéaire, en effet pour tous $\alpha,\;\beta\in R$ et $u,\;v\in C([0,1]\,,R),$ nous avons

$$\Lambda (\alpha u + \beta v) = \int_0^{\frac{1}{2}} (\alpha u + \beta v) (t) dt - \int_{\frac{1}{2}}^1 (\alpha u + \beta v) (t) dt$$

$$= \alpha \left(\int_{0}^{\frac{1}{2}} (u)(t)dt - \int_{\frac{1}{2}}^{1} (u)(t)dt \right) + \beta \left(\int_{0}^{\frac{1}{2}} (v)(t)dt - \int_{\frac{1}{2}}^{1} (v)(t)dt \right)$$

$$= \alpha \Lambda (u) + \beta \Lambda (v).$$

Par ailleurs

$$\left|\Lambda\left(u\right)\right| = \left|\int_{0}^{\frac{1}{2}}\left(u\right)(t)dt - \int_{\frac{1}{2}}^{1}\left(u\right)(t)dt\right| \leq \int_{0}^{\frac{1}{2}}\left\|u\right\|dt + \int_{\frac{1}{2}}^{1}\left\|u\right\|dt = \left\|u\right\|.$$

Ce qui montre que l'application linéaire Λ est continue et qu'en plus

$$\|\Lambda\| < 1$$

b) Commençons d'abord par déterminer l'application affine continue qui est de la forme g(t) = at + b avec $a, b \in R$ à déterminer.

Nous avons par la continuité de g: $\begin{cases} g\left(\frac{1}{2}-\frac{1}{n}\right)=1\\ g\left(\frac{1}{2}+\frac{1}{n}\right)=-1 \end{cases}$ ce qui donne a=-n et $b=\frac{n}{2}$ i.e. $g(x)=-nt+\frac{n}{2}$. Par ailleurs, pour $n\geq 3$,

$$\begin{split} \Lambda(u_n) &= \int_0^{\frac{1}{2} - \frac{1}{n}} u_n(t) dt + \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} u_n(t) dt - \left(\int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} u_n(t) dt + \int_{\frac{1}{2} + \frac{1}{n}}^{1} u_n(t) dt \right) \\ &= 1 - \frac{2}{n} + \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} \left(-nt + \frac{n}{2} \right) dt - \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} \left(-nt + \frac{n}{2} \right) dt \\ &= 1 - \frac{2}{n} + \frac{1}{2n} + \frac{1}{2n} = 1 - \frac{1}{n}. \end{split}$$

D'où $\|\Lambda\| = \sup\left\{\frac{|\Lambda(u)|}{\|u\|}: u \in C\left(\left[0,1\right],R\right) - \left\{0\right\}\right\} \ge \sup\left|\Lambda\left(u_n\right)\right| = \sup\left\{1 - \frac{1}{n}: n \ge 3\right\} = 1.$

Et par comparaison avec la question (a), on obtient

$$\|\Lambda\| = 1.$$

Exercice2

- 1) Nous savons que tout sous-ensemble fermé d'un compact est compact. Comme la suite $(K_n)_{n\in N}$ est une suite décroissante de fermés avec K_o compact il en résulte que tous les K_n sont des compacts.
 - 2) Montrons que $K = \bigcap_{n \in N} K_n \neq \phi$.

On procède par absurde i.e. on suppose que $K=\phi$ ce qui donne par passage au complémentaire par rapport à K_o que

$$K_o = \cup_{n \in N} CK_n$$

et puique les CK_n forme un recouvrement d'ouverts pour K_o et que ce dernier est compact on peut en extraire un sous recouvrement fini i.e.

$$K_o = \bigcup_{i=1,\dots,n} CK_i$$

ce qui donne

$$\phi = \bigcap_{i=1,\dots,n} K_i = K_n \neq \phi$$

Contradiction et par suite $K \neq \phi$.

3) Soit U un ouvert contenant K. Montrons l'existence d'un $n \in N$ tel que $K_n \subset U$.

En effet supposons qu'aucun des K_n n'est contenu dans U alors pour tout $n \in N$, il existe $x_n \in K_n \cap CU$. Pour chaque $n \in N$, la suite $(x_{n+l})_{l \in N} \subset K_n$ et puisque ce dernier est compact alors elle admet une sous-suite convergente vers $x_o \in K_n$. Ce qui montre alors que $x_o \in \cap_{n \in N} K_n = K$. Par ailleurs la suite $(x_n)_{n \in N} \subset CU$ qui est fermé et par suite $x_o \in CU$ ce qui contredit le fait que $K \subset U$. Par conséquent il existe $n \in N$ tel que $K_n \subset U$.

Exercice3

1) Montrons que l'image d'une suite de Cauchy par une application uniformément continue est une suite de Cauchy.

Soit $(x_n)_{n\in N}$ une suite de Cauchy de (X,d) i.e. telle que pour tout $\eta>0$ il existe $n_o\in N$ telle que pour tous $m,n\geq n_0$ on a $d(x_n,x_m)<\eta$. Puisque f est uniformément continue alors pour tout $\epsilon>0$ il existe $\delta>0$ tel que pour tous $x,y\in X$ tels que $d(x,y)<\delta$ on a $D(f(x),f(y))<\epsilon$. En prenant $\eta=\delta$, il existe alors $n_o\in N$ tels que pour tous $m,n\geq n_0$ on aura $D(f(x_n),f(x_m))<\epsilon$. Ce qui montre que $(f(x_n))_{n\in N}$ est une suite de Cauchy dans (Y,D).

2) Montrons que si Y est complet, X l'est aussi.

Soit $(x_n)_{n\in\mathbb{N}}\subset X$ une suite de Cauchy, puisque f est uniforment continue et par la première question $(y_n=f(x_n))_{n\in\mathbb{N}}$ est une suite de Cauchy dans (Y,D) qui est complet et $y_n=f(x_n)\to y\in Y$ et comme f est un homéomorphise $x_n=f^{-1}(y_n)\to f^{-1}(y))=x\in X$.