<u>Université de Tlemcen :: Faculté des sciences :: Département de mathématiques</u> 2^{ème} année LMD MI - Mathématiques - (Semestre 3)

Epreuve finale de logique mathématique

Mercredi 25 Janvier 2017 <u>Durée</u>: 1 h 30 mn

Questions de cours (10 points)

- 1. Citer un exemple familier qui explique la définition de l'implication matérielle.
- 2. Pourquoi parle-t-on justement d'implication matérielle?
- 3. Citer un exemple de proposition logique vraie dans un cadre mathématique donné et fausse dans un autre cadre.
- 4. Citer un des axiomes de Zermelo et Fraenkel.
- 5. Citer la définition de la barre de Scheffer.
- 6. Quel est le connecteur logique qui permet de traduire la différence symétrique entre ensembles ?
- 7. A quelle année environ remonte la théorie abstraite des ensembles ? Qui en est l'auteur ?
- 8. A qui remontent les premiers travaux de logique formelle ?
- 9. Expliquer ce qu'est une preuve constructive, une preuve déductive. On ne demande pas de citer des exemples.
- 10. Enoncer un paradoxe de votre choix.

Exercice 1 (5 points)

I. Soit la formule propositionnelle

$$P := [a \land (a \Rightarrow b)] \Rightarrow b$$

où a et b sont des atomes.

- 1. Citer une construction de la formule P.
- 2. Représenter la construction précédente en arbre.
- 3. Quel est l'ordre de la formule P ? Citer clairement la définition de l'ordre.
- 4. Dresser la table des valeurs de P. Conclusion?
- II. Etant données deux formules propositionnelles quelconques A et B, établir que

$$\models [A \land (A \Rightarrow B)] \Rightarrow B$$

III. Que peut-on dire de la formule P?

Exercice 2 (5 points)

Soit A(.) un ion à une place. Considérons la formule prédicative

$$P := A(x) \Rightarrow \exists x A(x)$$

- 1. Etudier la nature des diverses occurrences de variable.
- 2. Le domaine de l'ion A(.) est $\Omega := \{a, b, c\}$.
 - i- Enumérer les entrées de la table des valeurs de la formule P.
 - ii- De combien de lignes la TV de la formule P, est-elle formée ? Expliquer pourquoi.
 - iii- Effectuer l'analyse évaluante, d'une ligne de votre choix.
- 3. Montrer que la formule P est valide.
- 4. La formule P est-elle close? Justifier.
- 5. Peut-on clôturer la formule P ? Si oui, de combien de manières ? Lesquelles ?

Bon courage

<u>Université de Tlemcen :: Faculté des sciences :: Département de mathématiques</u> 2^{ème} année LMD MI - Mathématiques - (Semestre 3)

Corrigé de l'épreuve finale de logique mathématique

Mercredi 25 Janvier 2017 Durée : 1 h 30 mn

Questions de cours

Les réponses aux questions posées se trouvent dans Mathématiques et Programmation Tome 1 (MP1) et/ou El-Wadjiz.

- 1. Voir MP 1, pages 32, 33 et El-Wadjiz, page 13.
- 2. C'est pour distinguer l'implication considérée comme connecteur logique (application booléenne) de l'implication de cause à effet.
- 3. Voir MP 1, page 29.
- 4. Voir MP 1, pages 33, 34 et El-Wadjiz, pages 10, 17.
- 5. Voir MP 1, page 41 et El-Wadjiz, page 26.
- 6. Voir MP 1, page 38 et El-Wadjiz, page 24.
- 7. Voir MP 1, page 40.
- 8. Voir MP 1, page 39.
- 9. Voir MP 1, pages 100, 101, 102.
- 10. Voir MP 1, pages 107, ..., 112.

Exercice 1

I-

1. La séquence de formules suivantes est une construction de la formule P.

 $A_1 := a$ (atome)

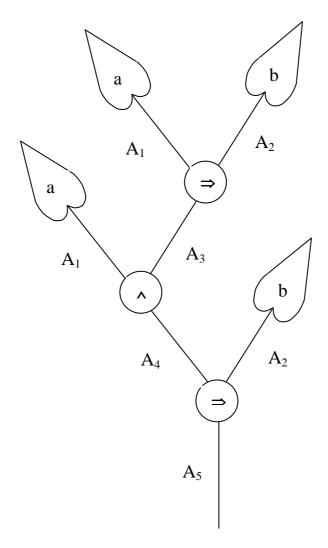
 $A_2 := b$ (atome)

 $A_3 := A_1 \Rightarrow A_2$

 $A_4 := A_1 \wedge A_3$

 $A_5 := A_4 \Rightarrow A_2$

2. Représentation arborescente de la construction précédente :



N.B. La lecture est effectuée de gauche à droite.

- 3. L'ordre de la formule est 3. Il s'agit du <u>nombre d'occurrences</u> des connecteurs logiques figurant dans la formule P.
 - 4. Dressons la table des valeurs de la formule P.

a	b	a⇒b	$a \wedge (a \Rightarrow b)$	P
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

Selon cette table, la formule P est valide.

II- Posons

$$Q := [A \land (A \Rightarrow B)] \Rightarrow B$$

La formule Q est obtenue, en remplaçant, dans la formule P, l'atome a par la formule A et l'atome b par la formule B. La formule P étant valide, la formule Q l'est également, conformément au théorème de substitution.

III- La validité de la formule P est une justification de la règle de détachement (ou règle du modusponens.)

Exercice 2

1. La première occurrence de x est libre et la seconde est liée par le quanteur existentiel. Pour éviter la confusion, réécrivons la formule P comme suit :

$$P := A(y) \Rightarrow \exists x A(x)$$

- 2. i- La table des valeurs de la formule prédicative P admet en entrée
 - Les trois éléments de Ω , attribués à tour de rôle à y.
 - Les huit fonctions logiques associées à l'ion A(.)
 - ii- D'après le principe fondamental d'arithmétique, la table des valeurs de P est formée de

$$3 * 8 = 24$$
 lignes.

iii- Attribuons à y, l'élément b de Ω et associons à l'ion A(.), la fonction logique suivante :

$$\varphi(t) := \begin{cases} 0 & \text{si } t = a \\ 0 & \text{si } t = b \\ 1 & \text{si } t = c \end{cases}$$

La valeur logique de l'ion A(y) est $\varphi(b)$, c'est à dire 0 et celle de l'ion $\exists x \ A(x)$ est 1, vu que $(\exists t \in \Omega) \ \varphi(t) = 1$. La valeur logique du prédicat P, pour l'interprétation en cours, est donc 1.

- 3. Montrons que la formule P est valide. Considérons pour cela, un domaine Ω , de l'ion A(.) de cardinal non nul n, arbitrairement fixé. Attribuons à y, un quelconque élément a, de Ω et associons à l'ion A(.) une quelconque fonction logique ϕ , définie sur Ω . Distinguons deux cas.
 - Pour tout $t \in \Omega$, $\phi(t) := 0$. Dans ce cas la valeur logique de l'ion A(y) est $\phi(a) := 0$. La valeur logique du prédicat P est par conséquent 1.
 - Il existe $t \in \Omega$, $\varphi(t) := 1$. Dans ce cas la valeur logique de l'ion $\exists x \ A(x)$ est 1. La valeur logique du prédicat P est donc 1, quelque soit la valeur $\varphi(a)$.

Ce qu'il fallait démontrer.

- 4. La formule P n'est pas close car elle contient une occurrence libre de variable.
- 5. On peut clôturer la formule P de quatre manières différentes, à savoir :

$$\exists y A(y) \Rightarrow \exists x A(x)$$

$$\exists y [A(y) \Rightarrow \exists x A(x)]$$

$$\forall y A(y) \Rightarrow \exists x A(x)$$

$$\forall y [A(y) \Rightarrow \exists x A(x)]$$