Mohamed.Messabihi@gmail.com

https://sites.google.com/site/informatiquemessabihi/

Université Abou Bakr Belkaïd - Tlemcen Faculté des sciences 1^{ère} L.M.D. MI 2016-2017

3 TP: Les structures répétitives

Travail à effectuer

3.1 Puissance

Écrire un programme qui calcule la $n^{\text{ème}}$ puissance d'un nombre x, où n est un entier positif. n et x sont donnés par l'utilisateur.

$$x^n = \underbrace{x * x * \dots * x}_{n \text{ fois}}$$

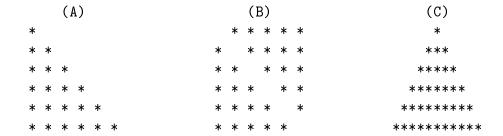
3.2 Factorielle

On rappelle que la fonction factorielle est définie sur les entiers positifs de la façon suivante :

$$\left\{ \begin{array}{l} 0! = 1 \\ n! = n \times (n-1) \times \dots \times 2 \times 1 \quad si \ n > 1 \end{array} \right.$$

Écrire un programme qui calcule la factorielle d'un entier n donné par l'utilisateur.

Remarque: utiliser une boucle autre que celle utilisée en TD.


3.3 Dépassement

Écrire un programme permettant de déterminer la première puissance de 2 dépassant un entier N fourni par l'utilisateur. Par exemple, si N=200 alors la puissance de 2 dépassant N est 9 car $2^8=256$ (et $2^7=128$).

3.4 Dessin

Écrire un programme qui demande à l'utilisateur un entier n puis dessine :

- a) un triangle rectangle d'étoiles en utilisant la boucle "While" (figure A).
- b) un carré d'étoiles sans la diagonale en utilisant la boucle "Do While" (figure B).
- c) un triangle isocèle formé d'étoiles en utilisant la boucle "For" (Figure C).

3.5 Contrôle de saisie

Écrire un programme qui demande un nombre paire compris entre 60 et 120, jusqu'à ce que la réponse convienne. En cas de réponse supérieure à 120, on fera apparaître un message : « Plus petit! », et inversement, « Plus grand! » si le nombre est inférieur à 60. Si le nombre n'est pas paire on affichera « le nombre est impaire! »

Travail supplémentaire

3.6 Table de multiplication

Écrire un programme qui qui permet d'afficher la table de multiplication sous la forme ci-dessous :

Х*Ү	1	0	1	2	3	4	5	6	7	8	9	10
0	 	0	0	0	0	0	0	0	0	0	0	0
1	İ	0	1	2	3	4	5	6	7	8	9	10
2		0	2	4	6	8	10	12	14	16	18	20
3		0	3	6	9	12	15	18	21	24	27	30
4		0	4	8	12	16	20	24	28	32	36	40
5		0	5	10	15	20	25	30	35	40	45	50
6		0	6	12	18	24	30	36	42	48	54	60
7		0	7	14	21	28	35	42	49	56	63	70
8		0	8	16	24	32	40	48	56	64	72	80
9		0	9	18	27	36	45	54	63	72	81	90
10		0	10	20	30	40	50	60	70	80	90	100

3.7 Passage à la caisse

- 1. Écrire un programme utilisant la boucle « Repeat » qui permet de calculer la somme à payer d'un ensemble d'articles achetés par un client. Le prix de chaque article est saisi par l'utilisateur, la fin des articles est indiquée par la nombre zéro.
- 2. Compléter le programme pour qu'il puisse afficher le prix moyen des articles achetés.
- 3. Compléter le programme pour qu'il affiche le prix de l'article le moins cher ainsi que celui de l'article le plus cher.

Exemple: si la liste des prix est : 50, 110, 30, 150, 230, 360, 120, 0

La somme des articles achetés est
Le prix moyen des articles achetés est
L'article le moins cher vaut
L'article le plus cher vaut
30 DA.
360 DA

