Analyse III - Epreuve finale (Durée 02h)

Exercice 01:06 pts

Soit $\sum_{n=0}^{+\infty} a_n x^n$ le développement en série de Mac-Laurin de la fonction f(x)

tel que
$$\begin{cases} 2(n+1)a_{2n+2} = -a_{2n} \\ (n+2)a_{2n+3} = (n+1)a_{2n+1} \ \forall n \geq 0 \\ a_0 = a_1 = 1 \end{cases}$$

1. Etablir que

$$\forall n \ge 0$$
 $f^{(2n)}(0) = \frac{(-1)^n (2n)!}{2^n n!}$ et $f^{(2n+1)}(0) = \frac{(2n+1)!}{n+1}$
2. Calculer le rayon de convergence et la somme $f(x)$ de la série $\sum_{n=0}^{+\infty} a_n x^n$.

- 3. Montrer que $\int_0^1 f(x) dx$ converge et donner sa valeur sous forme de série.

Exercice 02:04 pts

Etudier la nature des intégrales impropres suivantes :
$$I_1 = \int_{\frac{\pi}{4}}^{1} \frac{tanx}{\sqrt[4]{-lnx(tan^4x-1)}} dx$$
 ; $I_2 = \int_{0}^{+\infty} \frac{cos3x \, dx}{(x^2+x)^{1/5}}$.

Exercice 03:10 pts

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$, paire et de période $P = 2\pi$ et telle que

$$f(x) = \begin{cases} 2x & \text{si } x \in \left[0, \frac{\pi}{2}\right] \\ \pi & \text{si } x \in \left[\frac{\pi}{2}, \pi\right] \end{cases}$$

- 1) Dessiner le graphe de f (On prendra au moins $x \in [-3\pi, 3\pi]$).
- 2) Montrer que la fonction f est développable en série de Fourier.
- 3) Calculer sa série de Fourier et montrer qu'elle converge normalement sur $\mathbb R.$

Calculer les sommes :
$$S_1 = \sum_{n \geq 1} \frac{1 - cosn\frac{\pi}{2}}{n^2}$$
 et $S_2 = \sum_{n \geq 1} \frac{(-1)^n \left(1 - cosn\frac{\pi}{2}\right)}{n^2}$, en déduire les sommes $S_3 = \sum_{n \geq 1} \frac{1}{(2n-1)^2}$ et $S_4 = \sum_{n \geq 1} \frac{1}{n^2}$

- 11. On cherche une solution particulière y = y(x) de l'équation différentielle (E): y'' - 2y = f(x) telle que y soit de classe C^2 sur \mathbb{R} et de période 2π .
- 1) Justifier que y est développable en série de Fourier de période 2 π .
- 2) Soient $a_n(y)$ et $b_n(y)$ les coefficients de Fourier de y et $a_n(y")$ et $b_n(y")$ les coefficients de Fourier de y".
- 3) Montrer que $a_n(y")=-n^2a_n(y)$ et $b_n(y")=-n^2b_n(y)$ $\forall n\geq 1$.
- 4) Montrer que si y est solution de (E) alors $b_n(y) = 0 \ \forall n \ge 1$ et

 $(2+n^2)a_n(y) = -a_n(f) \ \forall n \ge 0$

où $a_n(f)$ sont les coefficients de Fourier de f. En déduire une solution particulière y de l'équation (E) sous forme de série de Fourier.

6) Question facultative : Ecrire la solution générale de(E).